• Title/Summary/Keyword: internal bond test

Search Result 40, Processing Time 0.029 seconds

Evaluation of the Performance and Formaldehyde Emission Level of Particleboards Bonded with Urea-Formaldehyde Resins (요소수지로 접착된 파티클보드의 포름알데히드 방산량과 성능평가)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.92-97
    • /
    • 1998
  • Four urea-formaldehyde (UF) resins were synthesized as a particleboard (PB) binder with the four different initial formaldehyde/urea mole ratio and the final mole ratio of 1.15. The UF resins were characterized according to the standard method of resin adhesive analysis. PBs were manufactured using liquid UF resins at 5 minutes press time and 6% resin solids levels on an ovendry particle weight basis. A total of 20 PBs was fabricated for 5 panel replication per UF resin types. The panels were tested for physical strength properties per the procedure ASTM D 1037. The formaldehyde emission levels from the PBs bonded with the UF resins were tested according to 2-hour desiccator test method ASTM D 5582. There were no significant differences among UF resin types for internal bond strength of PBs. But there were significant differences among UF resin types for formaldehyde emission level of PBs. The results showed that the formaldehyde emission level was influenced by the UF resin types without reducing the adhesive performance.

  • PDF

Evaluating the pull-out load capacity of steel bolt using Schmidt hammer and ultrasonic pulse velocity test

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • Steel bolts are used in the construction industry for a large variety of applications that range from fixing permanent installations to temporary fixtures. In the past much research has been focused on developing destructive testing techniques to estimate their pull-out load carrying capacity with very little attention to develop non-destructive techniques. In this regards the presented research work details the combined use of ultrasonic pulse velocity and Schmidt hammer tests to identify anchor bolts with faculty installation and to estimate their pull-out strength by relating it to the Schmidt hammer rebound value. From experimentation, it was observed that the load capacity of bolt depends on its embedment length, diameter, bond quality/concrete strength and alignment. Ultrasonic pulse velocity test is used to judge the quality of bond of embedded anchor bolt by relating the increase in ultrasonic pulse transit time to the presence of internal pours and cracks in the vicinity of steel bolt and the surrounding concrete. This information combined with the Schmidt hammer rebound number, R, can be used to accurately identify defective bolts which resulted in lower pull-out strength. 12 mm diameter bolts with embedment length of 70 mm and 50 mm were investigated using constant strength concrete. Pull-out load capacity versus the Schmidt hammer rebound number for each embedment length is presented.

Reliability Test Assessment Technique for Pressure Compensation Type Hydraulic Pump (압력보상형 유압펌프 신뢰성 시험평가 기술)

  • Jung, Dong-Soo
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.371-385
    • /
    • 2011
  • Because consumer mostly utilizes company test standard, supplier spends burden of expenses on building test equipments and managing expert manpower to fulfill consumer's various tests. Therefore, it is urgent to standardize test assessment which has a bond of sympathy between consumer and supplier and evaluates reliability of their products. This study develops reliability assessment standard which is composed of 12 test items considering international and domestic test standards, company internal test standards of consumer companies and field conditions. Also this study introduces overall technical procedure on accelerated test with no failure which is used for the main technology of reliability assessment. To verify effectiveness of reliability assessment, the test results are herein analyzed through building the test equipments and performing the test items.

Shear Bond Strength of Porcelain Repair Systems (도재 수리 시스템의 전단결합강도에 관한 연구)

  • Woo, Soo;Shin, Soo-Youn;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.3
    • /
    • pp.211-220
    • /
    • 2006
  • Need of porcelain-repair system is largely demanding as dental porcelain restorations are increased in clinical dentistry. This study investigated shear bond strength of commercial porcelain-repair systems on dental porcelain and their reliability. Experimental groups were as follows; Group A Super Bond C&B, Group B Porcelain repair kit, Group C Ceramic repair, and Group D Spectrum system as a control. Porcelain disks were fired and embedded in epoxy resin. Porcelain surface were ground using 220 grit SiC disk, then cleaned in ultrasonic bath. Then porcelain specimens were treated with each repair system. A clear polystyrene cylinder 3.5 mm in internal diameter was filled with composite resin. Then the resin cylinder was polymerized with a visible light curing unit. Thirty one specimens at each group were prepared and stored at $37^{\circ}C$ distilled water for 48 h. Specimens were tested in an Instron testing machine according to ISO TR 11405. Mean shear bond strength and standard deviation of each group was $15.7{\pm}4.1MPa$ (Group A), $12.8{\pm}4.9MPa$ (Group B), $7.2{\pm}3.0MPa$ (Group C) and $9.6{\pm}2.2MPa$ (Group D). ANOVA and Tukey HSD post-hoc test showed that there were significant differences between groups (p<0.05). Data of bond strength were analyzed with two-parameter Weibull distribution. Confidence interval of Weibull modulus (m-parameter) at 95% of Group A (3.5-6.3) and Group D (3.6-6.0) were significantly higher than Group B (2.2-3.7) and Group C (2.0-3.4). There was little correlation between mean shear bond strength and Weibull modulus. Results indicated that acid-etching of porcelain surface increased porcelain-resin shear bonding strength.

An analytical analysis of the pullout behaviour of reinforcements of MSE structures

  • Ren, Feifan;Wang, Guan;Ye, Bin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.233-240
    • /
    • 2018
  • Pullout tests are usually employed to determine the ultimate bearing capacity of reinforced soil, and the load-displacement curve can be obtained easily. This paper presents an analytical solution for predicting the full-range mechanical behavior of a buried planar reinforcement subjected to pullout based on a bi-linear bond-slip model. The full-range behavior consists of three consecutive stages: elastic stage, elastic-plastic stage and debonding stage. For each stage, closed-form solutions for the load-displacement relationship, the interfacial slip distribution, the interfacial shear stress distribution and the axial stress distribution along the planar reinforcement were derived. The ultimate load and the effective bond length were also obtained. Then the analytical model was calibrated and validated against three pullout experimental tests. The predicted load-displacement curves as well as the internal displacement distribution are in closed agreement with test results. Moreover, a parametric study on the effect of anchorage length, reinforcement axial stiffness, interfacial shear stiffness and interfacial shear strength is also presented, providing insights into the pullout behaviour of planar reinforcements of MSE structures.

Utilization of Pyrolysis Oil from Pine Wood as Thermosetting Wood Adhesive Resins

  • Kim, Jae-Woo;Myers, Deland J.;Brown, Robert C.;Kuo, Monlin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.51-60
    • /
    • 2007
  • In this study, the possibility of using pyrolysis oil as wood adhesives was explored. Especially, adhesives were formulated by reacting pyrolysis oil and formaldehyde and also partially replacing phenol with pyrolysis oil in phenol-formaldehyde (PF) adhesive and soy hydrolizate/PF adhesive formulation. The pine wood was fast pyrolyized and the oils were obtained from a series of condensers in the pyrolysis system. The oils from each condenser were first reacted with formaldehyde to explore potential use of the oil itself as adhesive. The lap-shear bond strength test results indicated that the oil itself could be polymerized and form bonds between wood adherends. The oils from each condenser were then mixed together and used as partial replacement of phenol (25, 33, and 50% by weight) in phenol-formaldehyde adhesive. The bond strength of the oil containing PF adhesives was decreased as percent phenol replacement level increased. However, no significant difference was found between 25 and 33% of phenol replacement level. The oil-contained PF resins at 25, 33, and 50% phenol replacement level with different NaOH/Phenol (Pyrolysis oil) molar ratio were further formulated with soy hydrolizate to make soy hydrolizate/pyrolysis oil-phenol formaldehyde adhesive at 6:4 weight (wt) ratio and used for fiberboard manufacturing. Surface internal bond strength (IB) of the boards bonded with 33% replacement at 0.3 NaOH/Phenol (Pyrolysis oil) molar ratio performed better than other replacement levels and molar ratios. Thickness swelling after 24 hr cold water soaking and after 2 hr in boiling water was increased as % replacement of pyrolysis oil increased.

INFLUENCES OF CAMPHOROQUINONE ON THE PROPERTIES OF COMPOSITES (Camphoroquinone이 복합레진의 특성에 미치는 영향)

  • 탁흥수;박상진
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.41-50
    • /
    • 2001
  • The purpose of this study was to examine the influences of camphoroquinone on the properties of five experimental composites. The contents of camphoroquinone were varied as 0.2%, 0.3%, 0.4%, 0.5%, and 0.6%, with silanized filler 75% and tertiary amine 0.2%. Five kinds of experimental composites were prepared, and diametral tensile strength, shear bond strength, depth of cure and yellowish discoloration were tested as a measurement. Specimen numbers of 10 were applied to all test items and experimental groups. Specimens for testing the diametral tensile strengths with internal diameter of 6mm in diameter and 3mm in height were filled with 5 experimental composites which were crushed with 1mm/min cross-head speed on Instron universal testing machine (Model No. 4467). Shear bond strength was measured on specimens attached to bovine teeth enamel etched with 37% phosphoric acid. Depth of cure was measured by the measurement of height of specimens which were removed the un-polymerized portion with acetone. Yellowness measurements were made by chromometer(Minolta Co. Japan) using L$^*$a$^*$b$^*$ values. ANOVA and Multiple range tests were used analyzed data with confidence level at 95%. The mean value of the shear bond strengths ranged from 31.03MPa to 39.49MPa. Following results were obtained ; 1. Diametral tensile strength was highest in experimental group 3, then was not affected by the contents of camphoroquinone ($r^2$=0.0422). 2. Composite resins containing 0.4% camphoroquinone showed the highest shear bond strength, but there was no statistical significance (p=0.3718). 3. Camphoroquinone reduces the depth of cure in the composite resins (p=0.0004, $r^2$=0.9483). 4. Camphoroquinone made the composites yellowish ($r^2$=0.9815). These results mean that increased content of camphoroquinone reduces the depth of cure, and that camphoroquinone make composites yellowish.

  • PDF

Eccentric compressive behavior of novel composite walls with T-section

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.495-508
    • /
    • 2020
  • Double skin composite walls are alternatives to concrete walls to resist gravity load in structures. The composite action between steel faceplates and concrete core largely depends on the internal mechanical connectors. This paper investigates the structural behavior of novel composite wall system with T section and under combined compressive force and bending moment. The truss connectors are used to bond the steel faceplates to concrete core. Four short specimens were designed and tested under eccentric compression. The influences of the thickness of steel faceplates, the truss spacing, and the thickness of web wall were discussed based on the test results. The N-M interaction curves by AISC 360, Eurocode 4, and CECS 159 were compared with the test data. It was found that AISC 360 provided the most reasonable predictions.

An Experimental Study on Shear Behavior of Internal Reinforced Concrete Beam-Column Assembly (철근콘크리트 보-기둥 내부 접합부의 전단 거동에 관한 실험적 연구)

  • Lee, Jung-Yoon;Kim, Jin-Young;Oh, Ki-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2007
  • The beam-column assembly in a ductile reinforced concrete (RC) frames subjected to seismic loading are generally controlled by shear and bond mechanisms, both of which exhibit poor hysteretic properties. Hence the response of joints is restricted essentially to the elastic domain. The usual earthquake resistant design philosophy of ductile frame buildings allows the beams to form plastic hinges adjacent to beam-column assembly. Increased strain in these plastic hinge regions affect on joint strain to be increased. Thus bond and shear joint strength are decreased. The research reported in this paper presents the test results of five RC beam-column assembly after developing plastic hinges in beams. Main parameter of the test Joints was the amount of the longitudinal tensile reinforcement of the beams. Test results indicted that the ductile capacity of joints increased as the longitudinal tensile reinforcement of the beams decreased. In addition, both the tensile strain of the longitudinal reinforcement bars in the joint and the ductile ratio of the beam-column assemblages increased due to the yielding of steel bars in the plastic hinge regions.

Shearing Properties of Waste Tire Powder-Added Lightweight Soil by Direct Shear Test (직접전단시험에 의한 폐타이어 혼합경량토의 전단특성 연구)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.20-29
    • /
    • 2009
  • This study investigated the shear strength characteristics of waste tire powder-added lightweight soil (WTLS), which were developed to recycle dredged soil, bottom ash, and waste tires. The WTLS used in this experiment consisted of dredged soil, bottom ash, waste tire powder, and cement. Test specimens were prepared with various contents of waste tire powder ranging from 0% to 100% at 25% intervals and bottom ash contents of 0% or 100% by the weight of the dry dredged soil. In this study several series of direct shear tests were carried out, which indicated that the shear properties of WTLS were strongly influenced by the mixing conditions, such as the waste tire powder content and bottom ash content. The unit weight, as well as the shear strength of the WTLS, decreased with an increase in waste tire powder content. The shear strength of WTLS with bottom ash was 1.34 times greater than that of WTLS without bottom ash. An average increase in cohesion of 30 kPa was obtained in WTLS with the inclusion of bottom ash due to the bond strength induced from the pozzolanic reaction of the bottom ash. In this test, the maximum value of the internal friction angle was obtained with a 25% content of waste tire powder.