• Title/Summary/Keyword: intermolecular force

Search Result 42, Processing Time 0.027 seconds

The Binding of 5-Iodopyrimidines by Human serum albumin (5-Iodopyrimidines와 Human serum albumin과의 결합(結合))

  • Lee, Jong-Jin
    • Applied Biological Chemistry
    • /
    • v.1
    • /
    • pp.48-54
    • /
    • 1960
  • Studing the binding of the 5-Iodopyrimdines by human serum albumin we obtained the following conclusions; 1. The more strong electron donating groups in the molecule of 5-Iodopyrimidines, the larger the binding force with human serum albumin. This trend seems to be attributed by increase of polarization of the electron donating groups in 5-Iodopyrimidines molecule. 2. The binding force of 5-Iodopyrimidines by human serum albumin is increased with the pH increasing could be occurred the configurational changes of human albumin molecule, and this new binding sites of human serum albumin molecule would form the intermolecular complex with 5-Iodopyrimidines molecule more strongly.

  • PDF

The Crystal and Molecular Structure of Bromhexine$\cdot$HCl

  • Koo, Hung-Hoe;Jung, Yong-Je;Lee, Soon-Won
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.115-120
    • /
    • 1984
  • The crystals of bromhexine-HCl, $C_{14}$ H$_{21}$ N$_{2}$Br$_{2}$Cl, are orthohombic, space group Pca2 with a = 14.598(2)A, b=12.461(3)A, c =9 9.186(1) A and Z = 4. Intensity dat for 967 reflections (Fobs > 6.sigma.(F)) were collected on a Rigaku-Denki automatic four circle diffractometer. The structure was solved by the Patterson and Fourier methods. Refinements were carried out to the final R value of 0.082. The cyclohexane ring has a normal chair form and the benzene ring is planar. There are three independenet hydrogen bounds in the structure. One is an intermolecular hydrogen bond (N-H... Cl) and the others are intramolecular hydrogen bonds (N-H...Br, N$^{+}$-H...Cl$^{[-10]}$ ) Apart from the hydrogen bounding system the molecules are held together in the crystal by van der Waals force.e.

  • PDF

Crystal Structure of 3-Methyl-4-Methoxy-4'-Nitrostilbene

  • 서일환;김문집
    • Korean Journal of Crystallography
    • /
    • v.3 no.2
    • /
    • pp.67-71
    • /
    • 1992
  • The crystal structure of the title compound was determined from single crystal X-ray dirt fraction study : C16H16NO3, Mr=271.316, orthorh ombic, Aba2, a=15.750(3), b=13.470(2), c=13.356 (2) A, V=2833A, Z=8, Dx=1.26 Mgm-3, λ(MoK a) =0.71069A, r=0.51mm-2, F(000)=1136, T=291 K, R=0.0414 for 728 unique observed [F≥3e(F)] reflections and 240 parameters. The molecule is nearly planar within 0.2 A with the torsion angle -179(2)°for C(4)-C(7)-C(8)-C(9).The into rmolecular interactions are mainly by van der Waals force with the nearest intermolecular distance 3.647A between O(3) and C(4) translated by half unit along band c-axes.

  • PDF

Influence of Axial Mechanical Stress on the Conductivity of Fullerite Powder

  • Berdinsky, A.S.;Fink, D.;Chun, Hui-Gon;Chadderton, L.T.
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.316-320
    • /
    • 2004
  • The possibility to use powder consisting of fullerite microcrystallines as a device sensitive to the external axial mechanical load is considered. We suppose that the change of conductivity of fullerite microcrystalline powder as a function of external mechanical stress will be useful for the creation of nanoscale devices of sensor electronics. This new effect based on changing of intermolecular distance between fullerene molecules due to the action of external mechanical force, which can change the distance between fullerene molecules because of weak van der Waals interaction exists. The founded effect is quite linear and sensitive to external mechanical stress is better then in well-known pressure transducers is based on silicon technology.

A analysis of friction relation between tennis outsole and tennis playing surfaces (테니스화겉창과 테니스 스포츠바닥재간의 마찰관계상관 분석)

  • Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.361-380
    • /
    • 2002
  • The purposes of this study were to a analysis of friction relation between tennis outsole and tennis playing surfaces. Tennis footwear is an important component of tennis game equipment. It can support or damage players performance and comfort. Most importantly athletic shoes protect the foot preventing abrasions and injuries. Footwear stability in court sports like tennis is incredibly important since it is estimated that as many as 45% of all lower extremity injuries occur in the foot and ankle. The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. The friction force opposes the motion of the object. Friction results when two surfaces are pressed together closely, causing attractive intermolecular forces between the molecules of the two different surfaces. The outsole provides traction and reduces wear on the midsole. Today's outsoles address sport specific movements (running versus pivoting) and playing surface types. Different areas of the outsole are designed for the distinct frictional needs of specific movements. Traction created by the friction between the outsole and the surface allows the shoe to grip the surface. As surfaces, conditions and player motion change, traction may need to vary. An athletic shoe needs to grip well when running but not when pivoting. Laboratory tests have demonstrated force reductions compared to impact on concrete. There is a correlation between pain, injury and surface hardness. These are a variety of traction patterns on the soles of athletic shoes. Traction like any other shoe characteristic must be commensurate and balanced with the sport. The equal and opposite force does not necessarily travel back up your leg. The surface itself absorbs a portion of the force converting it to other forms of energy. Subsequently, tennis court surfaces are rated not only for pace but also for the percentage of force reduction.

Spin-coated ultrathin multilayers and their micropatterning using microfluidic channels

  • Hongseok Jang;Kim, Sangcheol;Jinhan Cho;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • A new method is introduced to build up organic/organic multilayer films composed of cationic poly(allylamine hydrochloride) (PAH) and negatively charged poly (sodium 4-styrenesulfonate) (PSS) using the spinning process. The adsorption process is governed by both the viscous force induced by fast solvent elimination and the electrostatic interaction between oppositely charged species. On the other hand, the centrifugal and air shear forces applied by the spinning process significantly enhances desorption of weakly bound polyelectrolyte chains and also induce the planarization of the adsorbed polyelectrolyte layer. The film thickness per bilayer adsorbed by the conventional dipping process and the spinning process was found to be about 4 ${\AA}$ and 24 ${\AA}$, respectively. The surface of the multilayer films prepared with the spinning process is quite homogeneous and smooth. Also, a new approach to create multilayer ultrathin films with well-defined micropatterns in a short process time is Introduced. To achieve such micropatterns with high line resolution in organic multilayer films, microfluidic channels were combined with the convective self-assembly process employing both hydrogen bonding and electrostatic intermolecular interactions. The channels were initially filled with polymer solution by capillary pressure and the residual solution was then removed by the .spinning process.

A Study on the thermal and electrical stability of PVDF organic thin films fabricated by physical vapor deposition method. (진공증착법을 이용하여 제조한 PVDF 유기 박막의 열적.전기적 안정 특성에 관한 연구)

  • 박수홍;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.93-101
    • /
    • 1999
  • The purposed of this paper is to investigate the electrical and thermal stability of Polyvinylidene fluoride(PVDF) organic thin films prepared by the vapor deposition method. The differential scanning calorimetry curve of the PVDF organic thin films prepared by increasing substrate temperature showed that the melting curve increased from $128^{\circ}C$ to $142^{\circ}C$. This result implied that the PVDF organic thin film prepared by increasing substrate temperature increased intermolecular force in the crystalline region. The anomalous properties in dielectric constant and dielectric loss at low frequency and high temperature were described for PVDF organic thin film containing impurity carriers. It was confirmed that in view of electric conductive characteristics the ohm's law is satisfied in the range of lower electric field and ln J was proportional to the electric field ln E as like the conventional property of ionic conduction in the range of higher electric field. It was confirmed that major carrier of conductivity was ions. The electrical stability was improved according to an increase of the substrate temperature. On the basis of this experimental result, it could be observed that the optimum temperature of substrate for the electrical and thermal stability was at $105^{\circ}C$.

  • PDF

The electrical characteristics of pentacene field-effect transistors with polymer gate insulators

  • Kang, Gi-Wook;Kang, Hee-Young;Park, Kyung-Min;Song, Jun-Ho;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.675-678
    • /
    • 2003
  • We studied the electrical characteristics of pentacene-based organic field-effect transistors (FETs) with polymethyl methacrylate (PMMA) or poly-4-vinylphenol (PVP) as the gate insulator. PMMA or PVP was spin-coated on the indium tin oxide glass substrate that serves as gate electrodes. The source-drain current dependence on the gate voltage shows the FET characteristics of the hole accumulation type. The transistor with PVP shows a higher field-effect mobility of 0.14 $cm^{2}/Vs$ compared with 0.045 $cm^{2}/Vs$ for the transistor with PMMA. The atomic force microscope (AFM) images indicate that the grain size of the pentacene on PVP is larger than that on PMMA. X-ray diffraction (XRD) patterns for the pentacene deposited on PVP exhibit a new Bragg reflection at $19.5{\pm}0.2^{\circ}$, which is absent for the pentacene on PMMA. This peak corresponds to the flat-lying pentacene molecules with less intermolecular spacing.

  • PDF

Photo-induced inter-protein interaction changes in the time domain; a blue light sensor protein PixD

  • Terazima, Masahide
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • For understanding molecular mechanisms of photochemical reactions, in particular reactions of proteins with biological functions, it is important to elucidate both the initial reactions from the photoexcited states and the series of subsequent chemical reactions, e.g., conformation, intermolecular interactions (hydrogen bonding, hydrophobic interactions), and inter-protein interactions (oligomer formation, dissociation reactions). Although time-resolved detection of such dynamics is essential, these dynamics have been very difficult to track by traditional spectroscopic techniques. Here, relatively new approaches for probing the dynamics of protein photochemical reactions using time-resolved transient grating (TG) are reviewed. By using this method, a variety of spectrally silent dynamics can be detected and such data provide a valuable description about the reaction scheme. Herein, a blue light sensor protein TePixD is the exemplar. The initial photochemistry for TePixD occurs around the chromophore and is detected readily by light absorption, but subsequent reactions are spectrally silent. The TG experiments revealed conformational changes and changes in inter-protein interactions, which are essential for TePixD function. The TG experiments also showed the importance of fluctuations of the intermediates as the driving force of the reaction. This technique is complementary to optical absorption detection methods. The TG signal contains a variety of unique information, which is difficult to obtain by other methods. The advantages and methods for signal analyses are described in detail in this review.

Quantitative Label-free Biodetection of Acute Disease Related Proteins Based on Nanomechanical Dynamic Microcantilevers

  • Hwang, Kyo-Seon;Cha, Byung-Hak;Kim, Sang-Kyung;Park, Jung-Ho;Kim, Tae-Song
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.151-160
    • /
    • 2007
  • We report the label-free biomolecules detection based on nanomechanical micro cantilevers operated in dynamic mode for detection of two marker proteins (myoglobin and creatin kinase-MB (CK-MB)) of acute myocardical infarctions. When the specific binding between the antigen and its antibody occurred on the fuctionalized microcantilever surface, mechanical response (i.e. resonant frequency) of microcantilevers was changed in lower frequency range. We performed the label-free biomolecules detection of myoglobin and CK-MB antigen in the low concentration (clinical threshold concentration range) as much as 1 ng/ml from measuring the dynamic response change of micro cantilevers caused by the intermolecular force. Moreover, we estimate the surface stress on the dynamic microcantilevers generated by specific antibody-antigen binding. It is suggested that our dynamic microcantilevers may enable one to use the sensitive label-free biomolecules detection for application to the disease diagnosis system based on mechanical immuno-sensor.