• 제목/요약/키워드: interleaved buck

검색결과 49건 처리시간 0.026초

ZVT Series Capacitor Interleaved Buck Converter with High Step-Down Conversion Ratio

  • Chen, Zhangyong;Chen, Yong;Jiang, Wei;Yan, Tiesheng
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.846-857
    • /
    • 2019
  • Voltage step-down converters are very popular in distributed power systems, voltage regular modules, electric vehicles, etc. However, a high step-down voltage ratio is required in many applications to prevent the traditional buck converter from operating at extreme duty cycles. In this paper, a series capacitor interleaved buck converter with a soft switching technique is proposed. The DC voltage ratio of the proposed converter is half that of the traditional buck converter and the voltage stress across the one main switch and the diodes is reduced. Moreover, by paralleling the series connected auxiliary switch and the auxiliary inductor with the main inductor, zero voltage transition (ZVT) of the main switches can be obtained without increasing the voltage or current stress of the main power switches. In addition, zero current turned-on and zero current switching (ZCS) of the auxiliary switches can be achieved. Furthermore, owing to the presence of the auxiliary inductor, the turned-off rate of the output diodes can be limited and the reverse-recovery switching losses of the diodes can be reduced. Thus, the efficiency of the proposed converter can be improved. The DC voltage gain ratio, soft switching conditions and a design guideline for the critical parameters are given in this paper. A loss analysis of the proposed converter is shown to demonstrate its advantages over traditional converter topologies. Finally, experimental results obtained from a 100V/10V prototype are presented to verify the analysis of the proposed converter.

Interleaved Boost-Flyback Converter with Boundary Conduction Mode for Power Factor Correction

  • Lin, Bor-Ren;Chien, Chih-Cheng
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.708-714
    • /
    • 2012
  • This paper presents a new interleaved pulse-width modulation (PWM) boost-flyback converter to achieve power factor correction (PFC) and regulate DC bus voltage. The adopted boost-flyback converter has a high voltage conversion ratio to overcome the limit of conventional boost or buck-boost converter with narrow turn-off period. The proposed converter has wide turn-off period compared with a conventional boost converter. Thus, the higher output voltage can be achieved in the proposed converter. The interleaved PWM can further reduce the input and output ripple currents such that the sizes of inductor and capacitor are reduced. Since boundary conduction mode (BCM) is adopted to achieve power factor correction, power switches are turned on at zero current switching (ZCS) and switching losses are reduced. The circuit configuration, principle operation, system analysis, and design consideration of the proposed converter are presented in detail. Finally, experiments conducted on a laboratory prototype rated at 500W were presented to verify the effectiveness of the converter.

Phase control of interleaved converters based on WTA

  • Tazaki, Shintaro;Saito, Toshimichi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1386-1389
    • /
    • 2002
  • We consider interleaved buck converters using a switching rule based on Winner-Take-All (ab. WTA) nonlinearity. We clarify that this system exhibits various bifurcation phenomena. We also show that the switching phase of each converter is controlled by the WTA. Using a simple test circuit, ripple reduction and typical phenomena are verified in the laboratory.

  • PDF

Digital State Feedback Control for a Single/Parallel Module Buck Converter Using the Pole Placement Technique

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.31-33
    • /
    • 2007
  • In this paper, a simple digital control scheme for the single/parallel module buck converters is proposed using a digital state feedback control method. The discrete state feedback controller structure for the robust tracking control is derived by using the error state. The proposed control system can precisely achieve the interleaved current sharing and the output regulation, and can achieve the systematical controller design for a given converter specification using the pole placement technique. For a design example, the single module buck converter is simulated using the MATLAB Simulink software and two 100W parallel module buck converters with a TMS320F2812 DSP is implemented.

  • PDF

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.

인터리빙 PFC를 적용한 모터구동 인버터 시스템 설계 (Design of the Inverter Motor Drive System Applied to PFC using Interleaving Method)

  • 윤성식;최현의;김태우;안호균;박승규;윤태성;곽군평
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.14-19
    • /
    • 2010
  • In this paper, using interleaved power factor correction how to improve the inverter efficiency studied. Interleaved method can reduce the conduction losses and the inductor energy. Generally, critical conduction mode (CRM) boost PFC converter used low power level because of the high peak currents. if you use the interleaved mode, CRM PFC can be used medium or high power application. interleaved CRM PFC can reduce current ripple for higher system reliability and size of buck capacitor and EMI filter size. Interleaved CRM PFC that is installed in front of inverter can maintain the constant voltage regardless of the input voltage.

순환 전류를 저감 시킬 수 있는 보조 Coupled-inductor를 사용한 영-전압 스위칭 interleaved 벅-컨버터 (Zero-Voltage Transition Interleaved Buck Converter with an Auxiliary Coupled-Inductor)

  • 이제현;조보형
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.60-61
    • /
    • 2016
  • 본 논문에서는 interleaved 벅-컨버터를 영-전압 스위칭으로 구동하기 위한 새로운 회로를 제안한다. 제안하는 회로는 두개의 벅-컨버터 모듈과 보조 회로로 구성된다. 보조 회로는 coupled-inductor와 커패시터로 구성된다. Coupled-inductor에 흐르는 전류가 스위치가 꺼지기 전에 스위치의 전류의 방향을 바꾸어서 영 전압 스위칭을 달성한다. 제안하는 회로는 보조회로에 반도체 소자를 추가하지 않고 수동 소자만으로 구성하여 신뢰성의 저하를 막는다. 또한 수동 소자만으로 구성된 보조 회로로 인해 발생하는 도통 손실의 증가를 최소화 한다. 제안하는 회로는 시뮬레이션을 통해 검증하였다.

  • PDF

인터리브드 PWM 컨버터에서의 Coupled Inductor 해석 (Analysis of Coupled Inductor for Interleaved PWM converter)

  • 신동설;차헌녕;이종필;유동욱;김희제
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.330-331
    • /
    • 2011
  • The interleaving method is usually used to reduce the ripple of output current of filter inductor in parallel operation of PWM DC/DC converter. Although the current ripple of filter inductor decreases, each current ripple of filter inductor is not decreased. In this study, the operation of interleaved buck converter with coupled inductor is analyzed in each operation mode. It is verified through experiment. The possibility of application to grid connected inverter with parallel operation is identified.

  • PDF

영 전압 천이를 갖는 2상 인터리브드 양방향 DC-DC 컨버터 (A Two-Phase Interleaved Bidirectional DC-DC Converter with Zero-Voltage-Transition)

  • 임창순;구남준;김민섭;현동석
    • 전력전자학회논문지
    • /
    • 제19권5호
    • /
    • pp.431-439
    • /
    • 2014
  • The two-phase interleaved bidirectional DC-DC converter (TIBDC) is a very attractive solution to problems related to battery energy storage systems. However, the hard-switching TIBDC increases the switching loss and electromagnetic interference noise when the switching frequency increases. Hence, a soft-switching technique is required to overcome these disadvantages. In this study, a novel TIBDC with zero-voltage transition (TIBDC-ZVT) is proposed. Soft switching in the boost and buck main switches is achieved through a resonant cell that consists of a single resonant inductor and four auxiliary switches. Given its single resonant inductor, the proposed TIBDC-ZVT has a reduced size and can easily be implemented. The validity of the proposed TIBDC-ZVT is verified through experimental results.

배터리 충·방전기 시스템에 적용되는 3상 양방향 절연형 인터리브드 DC-DC 컨버터의 병렬운전 (Parallel Operation of Three-Phase Bi-Directional Isolated Interleaved DC-DC Converters for The Battery Charge/Discharge System)

  • 조현식;이재도;차한주
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.15-22
    • /
    • 2014
  • Recently, parallel operation of dc-dc converters has been widely used in distributed power systems. In this paper, a control method to achieve parallel operation of three-phase bi-directional isolated interleaved dc-dc converters is discussed for the battery charging and discharging system which consists of the 32 battery charger/dischargers and two three-phase bi-directional isolated interleaved dc-dc converters. In the boost mode, the battery energy is delivered to the grid, whereas the grid energy is transferred to the battery in the buck mode operation. The average current sharing control method is employed to obtain an equal conducting of each phase current in the three-phase dc-dc converter. By using the proposed method, the imbalance factor is gratefully reduced from 8 percent to 1 percent. Two 2.5kW three-phase bi-directional dc-dc converter prototype have been built and the proposed method has been verified through experiments.