• Title/Summary/Keyword: interlayer coupling

Search Result 68, Processing Time 0.03 seconds

Magnetoresistive of (NiFe/CoFe)/Cu/CoFe Spin-Valvec ((NiFe/CoFe)/Cu/CoFe Spin-Valve 박막의 자기저항 특성)

  • 오미영;이선영;이정미;김미양;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.265-273
    • /
    • 1997
  • The MR ratios and the exchange biasing field and interlayer coupling field were investigated in $Ni_{91}Fe_{19}/Co_{90}Fe_{10}/Cu/Co_{90}Fe_{10}/NiO$ spin-valve sandwiches grown on antiferromagnetic NiO films as a function of the NiO thickness, the thickness of Cu and pinning layer $Co_{90}Fe_{10}$. The spin-valve sandwiches were deposited on the Corning glass 7059 by means of the 3-gun dc and 1-gun rf magnetron sputtering at a 5 mtorrpartial Ar pressure and room temperature. The deposition field was 50 Oe. The MR curve was measured by the four-terminal method with applied magnetic soft bilayer [NiFe/CoFe] (90$\AA$) decreased dramatically to less than 10 Oe when the NiFe/CoFe bilayer used an NiFe bilayer thicker that 20$\AA$. So NiFe layer improved the softmagnetic properties in the NiFe/CoFe bilayer. The GMR ratio and the magnetic field sensitivity of the spin-valve film $Ni_{91}Fe_{19}(40{\AA})/Co_{90}Fe_{10}(50{\AA}) /Cu(30{\AA})/Co_{90}Fe_{10}(35{\AA})/NiO(800{\AA})$ was 6.3% and about 0.5 (%/Oe), respectively. The MR ratio had 5.3% below an annealing temperature of 20$0^{\circ}C$ which slowly decreased to 3% above 30$0^{\circ}C$. The large blocking temperature of the spin-valve film was taken (as being) due to the good stability of the NiO films. Thus, the spin-valve films with a free NiFe/CoFe layer clearly had a high large GMR output and showed a effective magnetic field sensitivity for a suitable spin-valve head material.

  • PDF

Field-effect Transistors Based on a Van der Waals Vertical Heterostructure Using CVD-grown Graphene and MoSe2 (화학기상증착법을 통해 합성된 그래핀 및 MoSe2를 이용한 반데르발스 수직이종접합 전계효과 트랜지스터)

  • Seon Yeon Choi;Eun Bee Ko;Seong Kyun Kwon;Min Hee Kim;Seol Ah Kim;Ga Eun Lee;Min Cheol Choi;Hyun Ho Kim
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.100-104
    • /
    • 2023
  • Van der Waals heterostructures have garnered significant attention in recent research due to their excellent electronic characteristics arising from the absence of dangling bonds and the exclusive reliance on Van der Waals forces for interlayer coupling. However, most studies have been confined to fundamental research employing the Scotch tape (mechanical exfoliation) method. We fabricated Van der Waals vertical heterojunction transistors to advance this field using materials exclusively grown via chemical vapor deposition (CVD). CVDgrown graphene was patterned through photolithography to serve as electrodes, while CVD-grown MoSe2 was employed as the pickup/transfer material, resulting in the realization of Van der Waals heterojunction transistors with interlayer charge transfer effects. The electrical characteristics of the fabricated devices were thoroughly examined. Additionally, we observed variations in the transistor's performance based on the presence of defects in MoSe2 layer.

Magnetic Sensitivity Depending on Width of IrMn Spin Valve Film Device (IrMn 스핀밸브 박막소자의 폭 크기에 의존하는 자장감응도)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.41-44
    • /
    • 2010
  • The Cu thickness dependence of magnetic sensitivity for the NiFe/Cu/NiFe/IrMn spin valve multilayer was investigated. The magnetic properties measured by minor MR curves for the Ta(5 nm)/NiFe(8 nm)/Cu(3.5 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm) multilayer is MR = 1.46 %, MS = 2.0 %/Oe, $H_c\;=\;2.6\;Oe$, and $H_{int}\;=\;0.1\;Oe$. The magnetic sensitivities of GMR-SV devices with ten different widths and a same length of $4.45\;{\mu}m$ by fabricated by photo lithography decreased from 0.3 %/Oe to 0.06%/Oe as from a width of $10\;{\mu}m$ to $1\;{\mu}m$.

A Study on the Magnetoresistive RAM (MRAM) Characteristics of NiFeCo/Cu/Co Trilayers (NiFeCo/Cu/Co 삼층막의 자기저항 메모리 특성에 관한 연구)

  • 김형준;이병일;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.152-158
    • /
    • 1997
  • NiFeCo/ Cu /Co trilayers were formed on 4$^{\circ}$ tilt-cut Si(111) substrates with a Cu(50$\AA$) underlayer and large-scaled test magnetoresistive RAM (MRAM) cells were fabricated using a conventional lithographic process. NiFeCo / Cu /Co trilayers deposited on the same templates without any applied magnetic field showed strong in plane uniaxial magnetic anisotropy and excellent magnetoresistive (MR) properties such as high MR ration and sensitivity within a low external magnetic field, which are suitable properties for a MRAM application. In order to obtain optimized MR results in NiFeCo /Cu /Co trilayers, the thickness of Cu spacer was varied. Interlayer coupling between two magnetic layers was observed and it was found that the MR properties were strongly dependent on the coupling force, especially near 20 $\AA$ of Cu spacer thickness. Test MRAM cells were fabricated using the optimized NiFeCo (60$\AA$)/ Cu (25$\AA$)/ Co (30$\AA$) trilayer thin films. With a 10 mA of sense current and 5$\times$$10^5$ of word current, 10 mV of signal output was obtained, which implies the strong potentials of NiFeCo/ Cu /Co trilayer thin films for a MRAM application.

  • PDF

Magnetoresistance of Single-type and Dual-type GMR-SV Multilayer Thin Films with Top and Bottom IrMn Layer (상부와 하부 IrMn층을 갖는 단일구조 및 이중구조 거대자기저항-스핀밸브 다층박막의 자기적 특성 비교 분석)

  • Choi, Jong-Gu;Kim, Su-Hee;Choi, Sang-Heon;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.115-122
    • /
    • 2017
  • The antiferromagnet IrMn based four different GMR-SV multilayers on Corning glass were prepared by using ion beam deposition and DC magnetron sputtering system. The magnetoresistance (MR) properties for single-type and dual-type GMR-SV multilayer films were investigated through the measured major and minor MR curves. The exchange bias coupling field ($H_{ex}$) and coercivity ($H_c$) of pinned layer, the $H_c$ and interlayer exchange coupling field ($H_{int}$) of free layer for the dual-type structure GMR-SV multilayer films consisted of top IrMn layer were 410 Oe, 60 Oe, 1.6 Oe, and 7.0 Oe, respectively. The minor MR curve of two free layers was performed the squarelike feature having a MR ratio of 8.7 % as the sum of 3.7 % and 5.0 %. The value of average magnetic field sensitivity (MS) was maintained at 2.0 %/Oe. Also, the magnetoresistance properties of the single-type and dual-type structure GMR-SV multilayer films consisted of bottom IrMn layer were decreased more than those of top IrMn layer. Two antiparallel states of magnetization spin arrays of the pinned and free layers in the dual-type GMR-SV multilayer films occurred the maximum MR value by the effect of spin dependence scattering.

Soft Magnetic Property Depending on thickness of Free Layer in CoFe/Cu/CoFe/IrMn Spin Valve Film (CoFe/Cu/CoFe/IrMn 스핀밸브 박막의 자유층 두께 감소에 따른 연자성 자기저항 특성 연구)

  • Choi, Jong-Gu;Go, In-Suk;Gong, Yu-Mi;Kim, Min-Ho;Park, Young-Suk;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.2
    • /
    • pp.52-56
    • /
    • 2009
  • Interlayer coupling field, coercivity, magnetoresitance ratio, and magnetic sensitivity depending on the thickness of free CoFe layer for the CoFe/Cu/CoFe/IrMn multilayer are investigated. In case of CoFe layer of $30\;{\AA}$ thickness for the CoFe(t)/Cu($25\;{\AA}$)/CoFe($60\;{\AA}$)/IrMn($80\;{\AA}$) multilayer with ferromagnet/non-magnet/ferromagnet structure induced by IrMn layer, the lowest coercivity and the highest magnetic sensitivity, which is contained soft magnetic property, are observed. On the other side, in case of CoFe layer of $90\;{\AA}$ thickness, there are the highest coercivity and the lowest magnetic sensitivity. The fabricated CoFe($30\;{\AA}$)/Cu($25\;{\AA}$)/CoFe($60\;{\AA}$)]/IrMn($80\;{\AA}$) spin valve device with $2{\times}8{\mu}m^2$ patterning size are measured by two probe method, which is selected the sensing current as the longitudinal direction and the easy axis as the transversal direction. The measuring magntoresistance ratio and magnetic sensitivity of GMR-SV device having the soft magnetic property are 3.0% and 0.3%/Oe, respectively.

Fabrication and Characteristics of a Highly Sensitive GMR-SV Biosensor for Detecting of Micron Magnetic Beads (미크론 자성비드 검출용 바이오센서에 대한 고감도 GMR-SV 소자의 제작과 특성 연구)

  • Choi, Jong-Gu;Lee, Sang-Suk;Park, Young-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.173-177
    • /
    • 2012
  • The multilayer structure of glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(t nm)/NiFe(3 nm)/FeMn(12 nm)/Ta(5.8 nm) as typical GMR-SV (giant magnetoresistance-spin valve) films is prepared by ion beam sputtering deposition (IBD). The coercivity and magnetoresiatance ratio are increased and decreased for the decrease of Cu thickness when the thickness of nonmagnetic Cu layer from is varied 2.2 nm to 3.0 nm. It means that the decrease of non-magntic layer is effected to the interlayer exchange coupling of pinned layer and the spin configuration array of free layer. For experiment of detecting and dropping of magnetic beads we used the GMR-SV sensor with glass/Ta/NiFe/Cu/NiFe/FeMn/Ta structure. From the comparison of before and after for the dropping status of magnetic bead, the variations of MR ratio, $H_{ex}$, and $H_c$ are showed 0.9 %, 3 Oe, and 2 Oe, respectively. The fabrication of GMR-SV sensor was included in the process of film deposition, photo-lithography, ion milling, and MR measurement. Further, GMR-SV device can be easily integrated so that detecting biosensor on a single chip becomes possible.

Bias Voltage Dependence of Magnetic Tunnel Junctions Comprising Double Barriers and CoFe/NiFeSiB/CoFe Free Layer (CoFe/NiFeSiB/CoFe 자유층을 갖는 이중장벽 자기터널접합의 바이어스전압 의존특성)

  • Lee, S.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.120-123
    • /
    • 2007
  • The typical double-barrier magnetic tunnel junction (DMTJ) structure examined in this paper consists of a Ta 45/Ru 9.5/IrMn 10/CoFe7/$AlO_x$/free layer/AlO/CoFe 7/IrMn 10/Ru 60 (nm). The free layer consists of an $Ni_{16}Fe_{62}Si_8B_{14}$ 7 nm, $Co_{90}Fe_{10}$ (fcc) 7 nm, or CoFe $t_1$/NiFeSiB $t_2$/CoFe $t_1$ layer in which the thicknesses $t_1$ and $t_2$ are varied. The DMTJ with an NiFeSiB-free layer had a tunneling magnetoresistance (TMR) of 28%, an area-resistance product (RA) of $86\;k{\Omega}{\mu}m^2$, a coercivity ($H_c$) of 11 Oe, and an interlayer coupling field ($H_i$) of 20 Oe. To improve the TMR ratio and RA, a DMTJ comprising an amorphous NiFeSiB layer that could partially substitute for the CoFe free layer was investigated. This hybrid DMTJ had a TMR of 30%, an RA of $68\;k{\Omega}{\mu}m^2$, and a of 11 Oe, but an increased of 37 Oe. We confirmed by atomic force microscopy and transmission electron microscopy that increased as the thickness of NiFeSiB decreased. When the amorphous NiFeSiB layer was thick, it was effective in retarding the columnar growth which usually induces a wavy interface. However, if the NiFeSiB layer was thin, the roughness was increased and became large because of the magnetostatic $N{\acute{e}}el$ coupling.