• 제목/요약/키워드: interior permanent magnet

검색결과 498건 처리시간 0.022초

Inductance Measurement of Interior Permanent Magnet Synchronous Motor in Stationary Frame of Reference

  • Lee, Geun-Ho;Choi, Woong-chul;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.391-397
    • /
    • 2011
  • An inductance measurement method for interior permanent magnet synchronous machine (IPMSM) is proposed in this paper. In this method, the motor is measured at standstill condition, and only a 3-phase voltage source, an oscilloscope and a DC voltage source are required. Depending on the deductive dq-axis voltage equations in the stationary frame of reference, the dq-axis inductances at different current magnitude and vector angle can be calculated by the measured 3-phase voltages and currents. And hence, the saturation and cross-magnetizing effect of the inductances are measurable. This paper introduces the principle equations, experiment setup, data processing, and results comparison on the concentrated-winding and distributed-winding IPMSMs.

매입형 영구자석 동기전동기의 최소 손실 벡터제어 (Loss Minimizing Vector Control of Interior Permanent Magnet Synchronous Motor)

  • 정의훈;이용재;하정익
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.330-336
    • /
    • 2015
  • This paper presents a loss-minimizing vector control method for interior permanent magnet synchronous motor (IPMSM). Conventionally, maximum torque per ampere (MTPA) control, which minimizes copper loss, has been widely used in industry. Iron loss, however, is not considered in MTPA control. In this paper, the loss model, including iron loss and copper loss, is derived to further reduce drive loss. The loss-minimizing vector controller is implemented based on the loss model. The controller generates optimal current vectors according to the operating conditions. The performance and validity of the proposed method are proved by experimental results through comparison with conventional methods.

매입형 영구자석 동기전동기의 인덕턴스 측정법 비교 분석 (A Comparative Analysis of Test Methods of Measuring d- and q-Axes Inductances for Interior Permanent Magnet Synchronous Motor)

  • 김승주;김철진;이주
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.923-928
    • /
    • 2009
  • The performance analysis and robust control of the interior permanent magnet synchronous motor(IPMSM) greatly depend on accurate value of its parameters. To achieve the high performance of torque control, it is necessary to consider exact inductance values because the inductances are nonlinear parameters of operating the IPMSM. Therefore many different methods have been performed for analysis of the methodology for the exact measurement of synchronous inductances. None of them is considered standard, and accuracy levels of all these methods are also not consistent. Among these experimental methods, the DC current decay test and the vector current control test are ideal for a laboratory environment. In this paper, these two test methods are compared by applying inductances to the IPMSM. The paper analyzes the measured inductances of the two methods and their differences with inductances obtained from the finite element method(FEM).

Analysis of Cogging Torque in Interior Permanent Magnet Motor by Analytical Method

  • Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권2호
    • /
    • pp.1-8
    • /
    • 2001
  • This paper deals with magnetic field analysis and computation of cogging torque using an analytical method in Interior Permanent Magnet Motor (IPMM). The magnetic field is analyzed by solving space harmonics field analysis due to magnetizing and the cogging torque is analyzed by combining field analysis with relative permeance. In reducing cogging torque, the inferences of various design variable and magnetizing distribution are investigated. It is shown that the slot and pole ratio (the pole-arc / pole-pitch ratio) combination has a significant effect on the cogging torque and presents a optimal flux barrier shape to reduce the cogging torque. The validity of the proposed technique is confirmed with 2-D Finite Element(FE) analysis.

On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter

  • Sim, Hyun-Woo;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.600-608
    • /
    • 2014
  • This paper presents estimation of d-axis and q-axis inductance of an interior permanent magnet synchronous motor (IPMSM) by using an extended Kalman filter (EKF). The EKF is widely used for control applications including the motor sensorless control and parameter estimation. The motor parameters can be changed by temperature and air-gap flux. In particular, the variation of the inductance affects torque characteristics like the maximum torque per ampere (MTPA) control. Therefore, by estimating the parameters, it is possible to improve the torque characteristics of the motor. The performance of the proposed estimator is verified by simulations and experimental results based on an 11kW PMSM drive system.

Air-Barrier Width Prediction of Interior Permanent Magnet Motor for Electric Vehicle Considering Fatigue Failure by Centrifugal Force

  • Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.952-957
    • /
    • 2015
  • Recently, the interior permanent magnet (IPM) motors for electric vehicle (EV) traction motor are being extensively researched because of its high energy density and high efficiency. The traction motor for EV requires high power and high efficiency at the wide driving region. Therefore, it is essential to fully consider the characteristics of the motor from low speed to high-speed driving regions. Especially, when the motor is driven at high speed, a significant centrifugal force is applied to the rotor. Thus, the rotor must be stably structured and be fully endured at the critical speed. In this paper, aims to examine the characteristics of the IPM motor by adjusting the width of air-barrier according to the permanent magnet position which is critical in designing an IPM motor for EV traction motors and to conduct a centrifugal force analysis for grasping mechanical safety.

회전자 돌극 설계를 이용한 다극 매입형 영구자석 동기전동기의 토크리플 저감 연구 (Study of the Reduction of Torque Ripples for Multi-pole Interior Permanent Magnet Synchronous Motors using Rotor Saliency)

  • 김기찬
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.6270-6275
    • /
    • 2014
  • 본 논문에서는 전기자동차용 견인전동기로서의 다극 매입형 영구자석 동기전동기의 회전자 돌극 설계에 의한 토크리플 개선 방안을 연구하였다. 다극 매입형 영구자석 동기전동기의 경우 영구자석에서 발생되는 자속이 고정자에 쇄교되지 않고 회전자 브릿지를 통해 누설되는 자속이 크다. 이러한 누설자속을 줄여 출력밀도를 향상시키고 토크리플을 저감하기 위해 영구자석 사이의 회전자 표면에 슬릿을 적용하였다. 슬릿에 적용되는 두 설계 파라미터를 제안하고 반응표면법을 이용하여 토크리플 감소와 출력 향상 최대화 설계를 수행하였다. 자속의 포화를 고려하기 위해 본 논문에서는 2차원 유한요소법을 이용하여 특성해석을 수행하고 이를 분석하였다.

특성 전류의 변화를 반영한 매입형 영구자석 동기전동기의 약계자 제어 알고리즘 개발 (Flux-Weakening control algorithm for an IPMSM drive reflecting the Characteristic Current Variations)

  • 한정현;이재석
    • 전기전자학회논문지
    • /
    • 제28권3호
    • /
    • pp.426-431
    • /
    • 2024
  • 본 논문은 특성 전류의 크기를 반영한 PMSM(Permanent Magnet Synchronous Motor) 드라이브의 약계자 제어 알고리즘을 제시한다. 변화한 영구자석 쇄교 자석의 비율을 계산하기 위해 고정자 쇄교 자속 관측기를 활용하였다. 계산된 영구자석 쇄교 자속의 비율로 특성 전류의 크기가 간접적으로 계산된다. 계산된 영구자석 쇄교 자속은 3D Look-up talbe(LUT)를 통해 IPMSM(Interior Permanent Magnet Synchronous Motor)의 MTPV(Maximum Torque Per Voltage)제어 사용 여부를 결정한다. 제안된 약계자 제어 방식은 시뮬레이션을 통해 검증된다.

Suppression of Shaft Voltage by Rotor and Magnet Shape Design of IPM-Type High Voltage Motor

  • Kim, Kyung-Tae;Cha, Sang-Hoon;Hur, Jin;Shim, Jae-Sun;Kim, Byeong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.938-944
    • /
    • 2013
  • In this paper, we propose a method for suppressing shaft voltage by modifying the shape of the rotor and the permanent magnets in interior permanent magnet-type-high-voltage motors. Shaft voltage, which is induced by parasitic components and the leakage flux in motor-driven systems, adversely affects their bearings. In order to minimize shaft voltage, we designed a magnet rearrangement and rotor re-structuring of the motor. The shaft voltage suppression effect of the designed model was confirmed experimentally and by comparative finite element analysis.

An Asymmetric Rotor Design of Interior Permanent Magnet Synchronous Motor for Improving Torque Performance

  • Yoon, Myung-Hwan;Kim, Doo-Young;Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.387-393
    • /
    • 2015
  • Torque ripple is necessarily generated in interior permanent magnet synchronous motors (IPMSMs) due to the non-sinusoidal distribution of flux density in the air gap and the magnetic reluctance by stator slots. This paper deals with an asymmetric rotor shape to reduce torque ripple which can make sinusoidal flux density distribution in the air gap. Meanwhile the average torque is relatively increased by the asymmetric rotor. Response surface method (RSM) is applied to find the optimum position of the permanent magnets for the IMPSM with improved torque performance. Consequently, an asymmetric structure is the result of RSM and the structure has disadvantage of a mechanical stiffness. Finally, the performance of suggested shape is verified by finite element analysis and structural analysis is conducted for the mechanical stiffness.