• Title/Summary/Keyword: interior RC joint

Search Result 31, Processing Time 0.025 seconds

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

Structural Behavior of the RC Column-Steel Beam Joint with Band Plate (Band Plate로 연결된 RC기둥-철골보 접합부의 이력거동에 관한 실험연구)

  • Seo, S.Y.;Yi, W.H.;Lee, L.H.;Yoon, S.J.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.213-221
    • /
    • 2002
  • This paper presents the experimental result of Reinforced Concrete column-steel beam joint connected by Band Plates(BP). Main parameters in the test are the shape of BP and thickness of plate. Ten interior and exterior RC column-steel beam joint specimens are designed. Cyclic loads are applied to the beam end of eight specimens (four interior specimens and four exterior specimens). To evaluate the cyclic effect, monotonic loads are acted for two specimens. All specimen showed similar failure pattern such as the plate of BP get torn after the large deformation. Even though the specimen with double cross type BP has lower strength than the specimen with single cross type BP, the energy dissipation capacity of the specimen turned out high. Thus, provided the strength of joint with double cross type to be designed to have suitable strength by increasing the thickness of plate, the joint system may show higher seismic capacity.

Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading

  • Long, Xu;Lee, Chi King
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.807-831
    • /
    • 2015
  • In the previous analytical studies on 2D reinforced concrete (RC) beam-column joints, the modified compression field theory (MCFT) and the strut-and-tie method (STM) are usually employed. In this paper, the limitations of these analytical models for RC joint applications are reviewed. Essentially for predictions of RC joint shear behaviour, the MCFT is not applicable, while the STM can only predict the ultimate shear strength. To eliminate these limitations, an improved STM is derived and applied to some commonly encountered 2D joints, viz., interior and exterior joints, subjected to monotonic loading. Compared with the other STMs, the most attracting novelty of the proposed improved STM is that all critical stages of the shear stress-strain relationships for RC joints can be predicted, which cover the stages characterized by concrete cracking, transverse reinforcement yielding and concrete strut crushing. For validation and demonstration of superiority, the shear stress-strain relationships of interior and exterior RC beam-column joints from published experimental studies are employed and compared with the predictions by the proposed improved STM and other widely-used analytical models, such as the MCFT and STM.

Seismic Assessment of Shear Capacity of RC Beam-Column Joints Without Transverse Re-bars (내진성능평가시 횡보강근이 없는 RC 보-기둥 접합부의 전단내력 평가)

  • Lee, Young Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.249-259
    • /
    • 2019
  • To study the seismic resistance of the shear capacity of the RC beam-column joints of two-story and four-story RC buildings, sample buildings are designed with ordinary moment resisting frame. For the shear capacity of joints, the equations of FEMA 356 and NZ seismic assessment are selected and compared. For comparison, one group of buildings is designed only for gravity loads and the other group is designed for seismic and gravity loads. For 16 cases of the designed buildings, seismic performance point is evaluated through push-over analysis and the capacity of joint shear strength is checked. Not only for the gravity designed buildings but also for seismic designed buildings, the demand of joint shear is exceeding the capacity at exterior joints. However, for interior joint, the demand of joint shear exceeds the capacity only for one case. At exterior joints, the axial load stress ratio is lower than 0.21 for gravity designed buildings and 0.13 for seismic designed buildings.

Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints (비내진 상세를 가진 RC 보-기둥 접합부의 거동)

  • 이한선;우성우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.133-140
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the Joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior Joint caused the 10%~20% reduction of strength and 27% reduction of ductility iii comparison with tile case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.n.

  • PDF

Finite element analysis of RC beam-column joints with high-strength materials

  • Noguchi, H.;Kashiwazaki, T.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.625-634
    • /
    • 1997
  • Reinforced concrete (RC) interior beam-column joints with high-strength materials: concrete compressive strength of 100 MPa and the yield strength of longitudinal bars of 685 MPa, were analyzed using three-dimensional (3-D) nonlinear finite element method (FEM). Specimen OKJ3 of joint shear failure type was a plane interior joint, and Specimen 12 of beam flexural failure type was a 3-D interior joint with transverse beams. Though the analytical initial stiffness was higher than experimental one, the analytical results gave a good agreement with the test results on the maximum story shear forces, the failure mode.

Cyclic behavior of interior beam-column connections in non-seismic RC frames at different loading rates

  • Dhakal, Rajesh P.;Pan, Tso-Chien
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.129-145
    • /
    • 2006
  • This paper provides an insight into the response of non-seismic reinforced concrete (RC) building frames to excitations of different frequencies through experimental investigation. The results of cyclic loading tests of six full-scale RC beam-column sub-assemblies are presented. The tested specimens did not have any transverse reinforcement inside the joint core, and they were subjected to quasi-static and dynamic loading with frequencies as high as 20 Hz. Some important differences between the cyclic responses of non-seismic and ductile RC frames are highlighted. The effect of excitation frequency on the behavior of non-seismic joints is also discussed. In the quasi-static tests, shear deformation of the joint panel accounted for more than 50% of the applied story drift. The test results also showed that higher-frequency excitations are less detrimental than quasi-static cyclic loads, and non-seismic frames can withstand a higher load and a larger deformation when they are applied faster.

Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints (비내진 상세를 가진 RC 보-기둥 접합부의 지진 거동)

  • Woo, Sung-Woo;Lee, Han-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.894-901
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior joint caused the 10%∼20% reduction of strength and 27% reduction of ductility in comparison with the case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

External retrofit of beam-column joints in old fashioned RC structures

  • Adibi, Mahdi;Marefat, Mohammad S.;Arani, Kamyar Karbasi;Zare, Hamid
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.237-250
    • /
    • 2017
  • There has been increasing attention in many countries on seismic retrofit of old fashioned RC structures in recent years. In such buildings, the joints lack transverse reinforcement and suffer inadequate seismic dimensional requirements and the reinforcement is plain bar. The behavior of the joints is governed by sliding of steel bars and diagonal shear failure is less influential. Different methods to retrofit beam-column joints have been proposed in the literature such as wrapping the joint by FRP sheets, enlargement of the beam-column joint, and strengthening the joint by steel sheets. In this study, an enlargement technique that uses external prestressed cross ties with steel angles is examined. The technique has already been used for substructures reinforced by deformed bars and has advantages such as efficient enhancement of seismic capacity and lack of damage to the joint. Three reference specimens and two retrofitted units are tested under increasing lateral cyclic load in combination with two levels of axial load. The reference specimens showed relatively low shear strength of 0.150${\surd}$($f_c$) and 0.30${\surd}$($f_c$) for the exterior and interior joints, respectively. In addition, relatively brittle behavior was observed and large deformations extended into the panel zone of the joints. The retrofit method has increased ductility ratio of the interior beam-column joints by 63%, and energy dissipation capacity by 77%, relative to the control specimen; For external joints, these values were 11%, and 94%. The retrofit method has successfully relocated the plastic joints far from the column face. The retrofit method has improved shear strength of the joints by less than 10%.