• Title/Summary/Keyword: intergranular crack

Search Result 74, Processing Time 0.03 seconds

A Study on the Mechanical Properties of Butt Welding Zone of Clad Steel According to the Process Design (공정 디자인에 따른 클래드강 맞대기 용접부의 기계적 특성에 관한 연구)

  • Lee, Jung-Hyun;Park, Jae-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.532-540
    • /
    • 2012
  • In this study, some considerations have been suggested in developing on-site techniques to evaluate the sensitization of stainless steels. Electrochemical potentiokinetic reactivation (EPR) technique is known to be a candidate tool for field applications since it enables quantitative assessment in reasonable test time, compared to oxalic etching (ditch) technique. The on-site application of the test method imposes additional restrictions on the selection of the test method (for example, minimum surface preparation requirement, insensitivity to testing temperature, etc.). The EPR and etching techniques have been compared in order to sensitization of stainless steel structures. It has been widely reported that the maximum sensitivity in the welded structure of stainless steel is shown at heat-affected zone (HAZ) than weldments with cast structure. In this work, sectioned weldments and external surfaces were investigated to reveal the degree of sensitization by the etching and the results were compared with those of EPR test. The EPR test showed little sensitivity to surface roughness and test temperature.

The Effect of Shot Peening on the Improvement of Fatigue Strength and Characteristics Fatigue Crack of the Aluminum Alloys (알루미늄 합금의 피로강도향상과 피로특성에 미치는 쇼트피닝 영향)

  • Jeon, Hyun-Bae;Lim, Man-Bae;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.256-261
    • /
    • 2007
  • The purpose of this study is to investigate the effect of shot peening on the fatigue strength and fatigue life of two kinds of aluminum alloys. The fatigue strength behavior of aluminum alloys were estimated by the stress ratio and shot velocities. The fatigue life and strength increased with increasing the test shot velocity. However, at the shot velocity range between 50m/s and 70m/s, the compressive residual stress phenomena were observed in test conditions of different shot velocity. The optimal shot velocity is acquired by considering the peak values of the compressive residual stress, dislocations, brittle striation, slip, and fisheye on the fracture surface of test specimen. It was observed from the SEM observation on the deformed specimen that the brittle striation, fisheye were showed in the intergranular fracture structure boundaries at the this velocities. Therefore, fatigue strength and fatigue life would be considered that shot velocity has close relationship with the compressive residual stress.

  • PDF

A Study on Mechanical Properties and Fracture Behaviors of In-situ Liquid Mixing Processed FeAl/TiC Intermetallic Matrix Composite (In-situ Liquid Mixing 방법으로 제조된 FeAl/TiC 금속간화합물 복합재료의 기계적 특성과 파괴양상에 관한 연구)

  • Chung, Euihoon;Park, Ikmin;Park, Yongho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.683-689
    • /
    • 2010
  • In this study, FeAl based intermetallic matrix composites reinforced with in-situ synthesized TiC particles were fabricated by an in-situ liquid mixing process. The microstructures, mechanical properties and fracture behaviors of the in-situ liquid mixing processed composite were investigated and compared with the vacuum suction casting processed composite. The results showed that the in-situ formed TiC particles exhibited fine and uniform dispersion in the liquid mixing processed composite, while significant grain boundary clustering and coarsening of TiC particles were obtained by the vacuum suction process. It was also shown in both types of composites that the hardness and bending strength were increased with the increase of the TiC volume fractions. Through the study of fractography in the bending test, it was considered that the TiC particles prohibited brittle intergranular fracture of FeAl intermetallic matrix by crack deflections. Because of the uniformly distributed fine TiC particles, the bending strength of the liquid mixing processed composite was superior to that of the casting processed composite.

Simulation of impact toughness with the effect of temperature and irradiation in steels

  • Wang, Chenchong;Wang, Jinliang;Li, Yuhao;Zhang, Chi;Xu, Wei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.221-227
    • /
    • 2019
  • One of the important requirements for the application of reduced activation ferritic/martensitic steel is to retain proper mechanical properties in irradiation and high temperature conditions. In order to simulate the impact toughness with the effect of temperature and irradiation, a simulation model based on energy balance method consisted of crack initiation, plastic propagation and cleavage propagation stages was established. The effect of temperature on impact toughness was analyzed by the model and the trend of the simulation results was basicly consistent with the previous experimental results of CLAM steels. The load-displacement curve was simulated to express the low temperature ductile-brittle transition. The effect of grain size and inclusion was analyzed by the model, which was consistent with classical experiment results. The transgranular-intergranular transformation in brittle materials was also simulated.

Effects of High Temperature Deformation and Thermal Exposure on Carbide Reaction Cast Alloy 738LC (고원변형과 열간노출에 따른 주조용 합금 738LC의 탄화물 분해거동 고찰)

  • Ju, Dong-Won;Jo, Chang-Yong;Kim, Du-Hyeon;Seo, Seong-Mun;Lee, Yeong-Chan
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.111-116
    • /
    • 2000
  • Fracture mode and carbide reactions of cast alloy 738LC during thermal exposure and creep at 816$^{\circ}C$/440MPa and 982$^{\circ}C$/152MPa were investigated. Crystallographic transgranular failure was observed in the specimen crept at 816$^{\circ}C$ due to shearing on the slip plane. Because selective oxidation at the grainboundaries which was exposed at the surface leads reduction in surface energy, however, early initiation of crack at the grainboundaries and intergranular failure were observed in the specimen crept at 982$^{\circ}C$/152MPa. As a result of decomposition of MC carbide at the tested temperatures, M(sub)23C(sub)6 carbide precipitated either on the grainboundaries or on the deformation band. The applied stress enhanced decomposition of MC. $\sigma$phase nucleated from Cr(sub)23C(sub)6 then grew to the ${\gamma}$+${\gamma}$\\` matrix. Precipitation of $\sigma$was accelerated by increasing temperature and applied stress.

  • PDF

Grain Boundary Character Changes and IGA/PWSCC Behavior of Alloy 600 Material by Thermomechanical Treatment (가공열처리에 의한 Alloy 600 재료의 결정립계특성 변화와 입계부식 및 1차측 응력부식균열 거동)

  • Kim, J.;Han, J.H.;Lee, D.H.;Kim, Y.S.;Roh, H.S.;Kim, G.H.;Kim, J.S.
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.919-925
    • /
    • 1999
  • Grain boundary characteristics and corrosion behavior of Alloy 600 material were investigated using the concept of grain boundary control by thermomechanical treatment(TMT). The grain boundary character distribution (GBCD) was analyzed by electron backscattered diffraction pattern. The effects of GBeD variation on intergranular at tack(JGA) and primary water stress corrosion cracking(PWSeC) were also evaluated. Changes in the fraction of coinci dence site lattice(CSL) boundaries in each cycle of TMT process were not distinguishable, but the total eSL boundary frequencies for TMT specimens increased about 10% compared with those of the commercial Alloy 600 material. It was found from IGA tests that the resistance to IGA was improved by TMT process. However, it was found from PWSCC test that repeating of TMT cycles resulted in the gradual decrease of the time to failure and the maximum load due to change in grain boundary characteristics, while the average crack propagation rate of primary crack increased mainly due to suppression of secondary crack propagation. It is considered that these corrosion characteristics in TMT specimens is attributed to 'fine tuning of grain boundary' mechanism.

  • PDF

Velocity-effective stress response of $CO_2$-saturated sandstones ($CO_2$로 포화된 사암의 속도-유효응력 반응)

  • Siggins, Anthony F.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Three differing sandstones, two synthetic and one field sample, have been tested ultrasonically under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones include: a synthetic sandstone with calcite intergranular cement produced using the CSIRO Calcite In-situ Precipitation Process (CIPS); a synthetic sandstone with silica intergranular cement; and a core sample from the Otway Basin Waarre Formation, Boggy Creek 1 well, from the target lithology for a trial $CO_2$ pilot project. Initial testing was carried on the cores at "room-dried" conditions, with confining pressures up to 65 MPa in steps of 5 MPa. All cores were then flooded with $CO_2$, initially in the gas phase at 6 MPa, $22^{\circ}C$, then with liquid-phase $CO_2$ at a temperature of $22^{\circ}C$ and pressures from 7 MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. Ultrasonic waveforms for both P- and S-waves were recorded at each effective pressure increment. Velocity versus effective pressure responses were calculated from the experimental data for both P- and S-waves. Attenuations $(1/Q_p)$ were calculated from the waveform data using spectral ratio methods. Theoretical calculations of velocity as a function of effective pressure for each sandstone were made using the $CO_2$ pressure-density and $CO_2$ bulk modulus-pressure phase diagrams and Gassmann effective medium theory. Flooding the cores with gaseous phase $CO_2$ produced negligible change in velocity-effective stress relationships compared to the dry state (air saturated). Flooding with liquid-phase $CO_2$ at various pore pressures lowered velocities by approximately 8% on average compared to the air-saturated state. Attenuations increased with liquid-phase $CO_2$ flooding compared to the air-saturated case. Experimental data agreed with the Gassmann calculations at high effective pressures. The "critical" effective pressure, at which agreement with theory occurred, varied with sandstone type. Discrepancies are thought to be due to differing micro-crack populations in the microstructure of each sandstone type. The agreement with theory at high effective pressures is significant and gives some confidence in predicting seismic behaviour under field conditions when $CO_2$ is injected.

Microstructure of alumina-dispersed Ce-TZP ceramics (알루미나가 분산된 세리아 안정화 지르코니아 세라믹스의 미세구조)

  • 김민정;이종국
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.122-127
    • /
    • 2000
  • Microstructural evolutions in ceria-stabilized zirconia (Ce-TZP) and alumina-dispersed Ce-TZP ceramics were investigated as functions of doping and annealing conditions. All of sintered specimens showed the relative density over 99 %. Sintered specimens had linear grain boundaries and normal grain shapes, but ceria-doped specimens had irregular grain shapes and nonlinear grain boundaries due to the diffusion-induced grain boundary migration during annealing at $1650^{\circ}C$ for 2 h. Mean grain boundary length of Ce-TZP with irregular grain shapes was higher than that of normal grain shapes, and was a value of 23pm at the maximum. Alumina particles dispersed in Ce-TZP inhibited the grain growth of zirconia particles. $Al_2O_3$Ce-TZP doped with ceria and annealed at $1650^{\circ}C$ for 2 h showed irregular grain shapes as well as small grain size. Added alumina particles showed the grain growth during sintering or annealing, and they changed the position from grain boundary to inside of the grains during the annealing. The specimens with normal grain shapes showed an intergranular fracture mode, whereas the specimens with irregular grain shapes showed a transgranular fracture mode during the crack propagation.

  • PDF

Al2TiO5-machinable Ceramics Made by Reactive Sintering of Al2O3 and TiO2 (Al2O3와 TiO2의 반응소결로 제조한 Al2TiO5-기계가공성 세라믹스)

  • Park, Jae-Hyun;Lee, Won-Jae;Kim, Il-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.498-502
    • /
    • 2010
  • Aluminium titanate($Al_2TiO_5$) has extremely anisotropic thermal expansion properties in single crystals, and polycrystalline material spontaneously microcracks in the cooling step after sintering process. These fine intergranular cracks limit the strength of the material, but provide an effective mechanism for absorbing strain energy during thermal shock and preventing catastrophic crack propagation. Furthermore, since machinable BN-ceramics used as an insulating substrate in current micro-electronic industry are very expensive, the development of new low-cost machinable substrate ceramics are consistently required. Therefore, cheap $Al_2TiO_5$-machinable ceramics was studied for the replacement of BN ceramics. $Al_2O_3-Al_2TiO_5$ ceramic composite was fabricated via in-situ reaction sintering. $Al_2O_3$ and $TiO_2$ powders were mixed with various mol-ratio and sintered at 1400 to $1600^{\circ}C$ for 1 h. Density, hardness and strength of sintered ceramics were systematically measured. Phase analysis and microstructures were observed by XRD and SEM, respectively. Machinability of each specimens was tested by micro-hole machining. The results of research showed that the $Al_2TiO_5$-composites could be used for low-cost machinable ceramics.

Sintered properties of silicon carbide prepared by using the alumina and yttria-coated SiC powder (알루미나 및 이트리아로 코팅된 분말을 사용하여 제조한 탄화규소의 소결물성)

  • Um, Ki-Young;Kim, Hwan;Kang, Hyun-Hee;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.645-650
    • /
    • 1998
  • Alumina- and yttria-coated SiC powder was prepared by the surface-induced precipitation method, and sintered properties of silicon carbide prepared from this powder were investigated. After a well dispersion of SiC powders in the aqueous solution of $Al_2(SO_4)_3$ and $Y_2(SO_4)_3$, the mixed precursors of aluminum hydroxide, aluminum carbonate, yttrium hydroxide, and yttrium carbonate were precipitated on the surfaces of SiC particles through the hydrolysis reaction of urea. SiC specimens with alumina and yttria exhibit, 97.8% of theoretical density after the sintering at $1900^{\circ}C$ for 2 hrs. During annealing at $2000^{\circ}C$, $\beta$longrightarrow$\alpha$ phase transformation of SiC had taken place and resulted with a rodlike microstructure. Toughness of sintered SiC was enhanced by crack deflection around the rodlike grains. In case of annealing less than that of 3 hr, the fracture toughness of SiC was slightly improved with increasing the amount of sintering aid. However, annealed specimens for a long time showed constant fracture toughness even though the amount of sintering aid increased. It is resulted that the main factor for toughening in annealed SiC for a long time is the pullout effect of rodlike grains during the propagation of cracks, and the amount of sintering aids is less effective on the fracture toughness of SiC.

  • PDF