• Title/Summary/Keyword: intergenic region

Search Result 120, Processing Time 0.024 seconds

Development of Specific SNP Molecular Marker from Thistle in the DNA Sequences of Chloroplast TrnL-F and Matk Region Using HRM Analysis (엉겅퀴의 엽록체 TrnL-F와 Matk 영역 염기서열의 HRM 분석을 통한 특이적 SNP 분자마커의 개발)

  • Lee, Shin-Woo;Lee, Soo Jin;Kim, Yun-Hee
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.524-529
    • /
    • 2019
  • Medicinal plants resources are becoming important assets since their usages have been expanded to the development of functional foods for human health, cosmetics and pharmaceutical industries. However, their phylogenetic origins and names are different from each country and quite often they are mixed each other resulting in the confusion for consumers. Particularly when they are very similar based on their morphological characteristics and distributed, it is extremely difficult to differentiate their origins even by specialists. Therefore, identification of each plant species is important for standardizing herbal medicine. Thistle is a medicinal and perennial plant. Obtaining information about the genetic diversity of plant populations is highly important for conservation and germplasm utilization. Although thistle is an important medicinal plant species registered in South Korea, no molecular markers are currently available to distinguish from other similar species from different countries. In this study, we developed single nucleotide polymorphism (SNP) markers derived from chloroplast genomic sequences to identify distinct Korean-specific thistle species via high resolution melting (HRM) curve analyses. We performed molecular authentication of four different kinds of thistle species from different regions using DNA sequences in the trnL-F and matK chloroplast intergenic region. The SNP markers developed in this study are useful for rapidly identifying specific thistle species from different country.

Comparison of Angelica Species Roots Using Taste Sensor and DNA Sequencing Analysis (미각센서와 DNA 염기서열을 이용한 당귀류 비교)

  • Kim, Young Hwa;Choi, Goya;Lee, Hye Won;Lee, Gwan Ho;Chae, Seong Wook;Kim, Yun Hee;Lee, Mi Young
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.37-42
    • /
    • 2012
  • Objectives : Angelica Gigantis Radix is prescribed as the root of different Angelica species on the pharmacopoeia in Korea, Japan and China. Chemical components and their biological activities were also different according to their species. A study for the development of simple method to compare Angelica roots was needed. In order to classify them, the methods such as DNA sequencing analysis and taste sensor were applied to three Angelica species like Angelica gigas, Angelica acutiloba and Angelica sinensis. Methods : PCR amplification of intergenic transcribed spacer (ITS) region was performed using ITS1 and ITS4 primer from nine Angelica roots, and then nucleotide sequence was determined. Taste pattern of samples were measured using the taste-sensing system SA402B equipped with a sensing unit, which consists of artificial lipid membrane sensor probes of anionic bitterness, astringency, saltiness, umami, and cationic bitterness (C00, AE1, CT0, AAE, and AN0, respectively). Results : As a result of comparing the similarity of the ITS region sequences, A. sinensis was discriminated from the others (A. gigas and A. acutiloba). Equally this genetic result, A. gigas and A. acutiloba showed similar taste pattern as compared to A. sinensis. Sourness, bitterness, aftertaste of bitterness, astringency, and aftertaste of astringency of A. sinensis were significantly high as compared with A. gigas and A. acutiloba. In contrast, richness was significantly low. Conclusions : These taste pattern can be used as a way of comparison of Angelica species and this technic could be applied to establish a taste pattern marker for standardization of herbs in various purposes.

The complete plastid genome and nuclear ribosomal transcription unit sequences of Spiraea prunifolia f. simpliciflora (Rosaceae)

  • Jeongjin CHOI;Wonhee KIM;Jee Young PARK;Jong-Soo KANG;Tae-Jin YANG
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.32-37
    • /
    • 2023
  • Spiraea prunifolia f. simpliciflora Nakai is a perennial shrub widely used for horticultural and medicinal purposes. We simultaneously obtained the complete plastid genome (plastome) and nuclear ribosomal gene transcription units, 45S nuclear ribosomal DNA (nrDNA) and 5S nrDNA of S. prunifolia f. simpliciflora, using Illumina short-read data. The plastome is 155,984 bp in length with a canonical quadripartite structure consisting of 84,417 bp of a large single-copy region, 18,887 bp of a short single-copy region, and 26,340 bp of two inverted repeat regions. Overall, a total of 113 genes (79 protein-coding genes, 30 tRNAs, and four rRNAs) were annotated in the plastome. The 45S nrDNA transcription unit is 5,848 bp in length: 1,809 bp, 161 bp, and 3,397 bp for 18S, 5.8S, and 26S, respectively, and 261 bp and 220 bp for internal transcribed spacer (ITS) 1 and ITS 2 regions, respectively. The 5S nrDNA unit is 512 bp, including 121 bp of 5S rRNA and 391 bp of intergenic spacer regions. Phylogenetic analyses showed that the genus Spiraea was monophyletic and sister to the clade of Sibiraea angustata, Petrophytum caespitosum and Kelseya uniflora. Within the genus Spiraea, the sections Calospira and Spiraea were monophyletic, but the sect. Glomerati was nested within the sect. Chamaedryon. In the sect. Glomerati, S. prunifolia f. simpliciflora formed a subclade with S. media, and the subclade was sister to S. thunbergii and S. mongolica. The close relationship between S. prunifolia f. simpliciflora and S. media was also supported by the nrDNA phylogeny, indicating that the plastome and nrDNA sequences assembled in this study belong to the genus Spiraea. The newly reported complete plastome and nrDNA transcription unit sequences of S. prunifolia f. simpliciflora provide useful information for further phylogenetic and evolutionary studies of the genus Spiraea, as well as the family Rosaceae.

Genome-wide Association Study Identification of a New Genetic Locus with Susceptibility to Osteoporotic Fracture in the Korean Population

  • Hwang, Joo-Yeon;Lee, Seung-Hun;Go, Min-Jin;Kim, Beom-Jun;Kim, Young-Jin;Kim, Dong-Joon;Oh, Ji-Hee;Koo, Hee-Jo;Cha, My-Jung;Lee, Min-Hye;Yun, Ji-Young;Yoo, Hye-Sook;Kang, Young-Ah;Oh, Ki-Won;Kang, Moo-Il;Son, Ho-Young;Kim, Shin-Yoon;Kim, Ghi-Su;Han, Bok-Ghee;Cho, Yoon-Shin;Koh, Jung-Min;Lee, Jong-Young
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.52-58
    • /
    • 2011
  • Osteoporotic fracture (OF), along with bone mineral density (BMD), is an important diagnostic parameter and a clinical predictive risk factor in the assessment of osteoporosis in the elderly population. However, a genome-wide association study (GWAS) on OF has not yet been clarified sufficiently. To identify OF-associated genetic variants and candidate genes, we conducted a GWAS in a population-based cohort (Korean Association Resource [KARE], n=1,427 [case: 288 and control: 1139]) and performed a de novo replication study in hospital-based individuals (Asan and Catholic Medical Center [ACMC], n=1,082 [case: 272 and control: 810]). In a combined meta-analysis, a newly identified genetic locus in an intergenic region at 10p11.2 (near genes FZD8 and ANKRD30A ) showed the most significant association (odd ratio [OR] = 2.00, 95% confidence interval [CI] = 1.47~2.74, p=$1.27{\times}10^{-6}$) in the same direction. We provide the first evidence for a common genetic variant influencing OF and genetic information for further investigation in bone metabolism.

UNDERSTANDING OF EPIGENETICS AND DNA METHYLATION (후생유전학 (Epigenetics)과 DNA methylation의 이해)

  • Oh, Jung-Hwan;Kwon, Young-Dae;Yoon, Byung-Wook;Choi, Byung-Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.3
    • /
    • pp.302-309
    • /
    • 2008
  • Epigenetic is usually referring to heritable traits that do not involve changes to the underlying DNA sequence. DNA methylation is known to serve as cellular memory. and is one of the most important mechanism of epigenetic. DNA methylation is a covalent modification in which the target molecules for methylation in mammalian DNA are cytosine bases in CpG dinucleotides. The 5' position of cytosine is methylated in a reaction catalyzed by DNA methyltransferases; DNMTl, DNMT3a, and DNMT3b. There are two different regions in the context of DNA methylation: CpG poor regions and CpG islands. The intergenic and the intronic region is considered to be CpG poor, and CpG islands are discrete CpG-rich regions which are often found in promoter regions. Normally, CpG poor regions are usually methylated whereas CpG islands are generally hypomethylated. DNA methylation is involved in various biological processes such as tissue-specific gene expression, genomic imprinting, and X chromosome inactivation. In general. cancer cells are characterized by global genomic hypomethylation and focal hypermethylation of CpG islands, which are generally unmethylated in normal cells. Gene silencing by CpG hypermethylation at the promotors of tumor suppressor genes is probably the most common mechanism of tumor suppressor inactivation in cancer.

Improving the Chitinolytic Activity of Bacillus pumilus SG2 by Random Mutagenesis

  • Vahed, Majid;Motalebi, Ebrahim;Rigi, Garshasb;Noghabi, Kambiz Akbari;Soudi, Mohammad Reza;Sadeghi, Mehdi;Ahmadian, Gholamreza
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1519-1528
    • /
    • 2013
  • Bacillus pumilus SG2, a halotolerant strain, expresses two major chitinases designated ChiS and ChiL that were induced by chitin and secreted into the supernatant. The present work aimed to obtain a mutant with higher chitinolytic activity through mutagenesis of Bacillus pumilus SG2 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on chitin agar and subsequent formation of halos, the mutated strains were examined for degradation of chitin under different conditions. A mutant designated AV2-9 was selected owing to its higher chitinase activity. To search for possible mutations in the whole operon including ChiS and ChiL, the entire chitinase operon, including the intergenic region, promoter, and two areas corresponding to the ChiS and ChiL ORF, was suquenced. Nucleotide sequence analysis of the complete chitinase operon from the SG2 and AV2-9 strains showed the presence of a mutation in the catalytic domain (GH18) of chitinase (ChiL). The results demonstrated that a single base change had occurred in the ChiL sequence in AV2-9. The wild-type chitinase, ChiL, and the mutant (designated ChiLm) were cloned, expressed, and purified in E. coli. Both enzymes showed similar profiles of activity at different ranges of pH, NaCl concentration, and temperature, but the mutant enzyme showed approximately 30% higher catalytic activity under all the conditions tested. The results obtained in this study showed that the thermal stability of chitinase increased in the mutant strain. Bioinformatics analysis was performed to predict changes in the stability of proteins caused by mutation.

Stable expression of brazzein protein, a new type of alternative sweetener in transgenic rice (형질전환 벼에서 brazzein 감미단백질의 안정적인 발현)

  • Lee, Ye Rim;Akter, Shahina;Lee, In Hye;Jung, Yeo Jin;Park, So Young;Cho, Yong-Gu;Kang, Kwon Kyoo;Jung, Yu Jin
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Brazzein is the smallest sweet protein and was isolated from the fruit pulp of Pentadiplandra brazzeana Baillon, native to tropical Africa. From ancient times, the indigenous people used this fruit in their diet to add sweetness to their daily food. Brazzein is 500 to 2000 times sweeter than sucrose on a weight basis and 9500 times sweeter on a molar basis. This unique property has led to increasing interest in this protein. However, it is expensive and difficult to produce brazzein other than in its native growing conditions which limits its availability for use as a food additive. In this study, we report high production yields of, brazzein protein in transgenic rice plants. An ORF region encoding brazzein and driven by the $2{\times}CaMV\;35S$ promoter was introduced into rice genome (Oryza sativa Japonica) via Agrobacterium-mediated transformation. After transformation, 17 regenerated plant lines were obtained and these transgene-containing plants were confirmed by PCR analysis. In addition, the selected plant lines were analyzed by Taqman PCR and results showed that 9 T0 lines were found to have a single copy out of 17 transgenic plants. Moreover, high and genetically stable expression of brazzein was confirmed by western blot analysis. These results demonstrate that recombinant brazzein was efficiently expressed in transgenic rice plants, and that we have developed a new rice variety with a natural sweetener.

Tag-SNP selection and online database construction for haplotype-based marker development in tomato (유전자 단위 haplotype을 대변하는 토마토 Tag-SNP 선발 및 웹 데이터베이스 구축)

  • Jeong, Hye-ri;Lee, Bo-Mi;Lee, Bong-Woo;Oh, Jae-Eun;Lee, Jeong-Hee;Kim, Ji-Eun;Jo, Sung-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.218-226
    • /
    • 2020
  • This report describes methods for selecting informative single nucleotide polymorphisms (SNPs), and the development of an online Solanaceae genome database, using 234 tomato resequencing data entries deposited in the NCBI SRA database. The 126 accessions of Solanum lycopersicum, 68 accessions of Solanum lycopersicum var. cerasiforme, and 33 accessions of Solanum pimpinellifolium, which are frequently used for breeding, and some wild-species tomato accessions were included in the analysis. To select tag-SNPs, we identified 29,504,960 SNPs in 234 tomatoes and then separated the SNPs in the genic and intergenic regions according to gene annotation. All tag-SNP were selected from non-synonymous SNPs among the SNPs present in the gene region and, as a result, we obtained tag-SNP from 13,845 genes. When there were no non-synonymous SNPs in the gene, the genes were selected from synonymous SNPs. The total number of tag-SNPs selected was 27,539. To increase the usefulness of the information, a Solanaceae genome database website, TGsol (http://tgsol. seeders.co.kr/), was constructed to allow users to search for detailed information on resources, SNPs, haplotype, and tag-SNPs. The user can search the tag-SNP and flanking sequences for each gene by searching for a gene name or gene position through the genome browser. This website can be used to efficiently search for genes related to traits or to develop molecular markers.

Identification and Characterization of Aspergillus oryzae Isolated from Soybean Products in Sunchang County (순창군 장류로부터 분리된 황국균의 동정 및 특성)

  • Lim, Eunmi;Lee, Ji Young;Elgabbar, Mohammed A. Abdo;Han, Kap-Hoon;Lee, Bo-Soon;Cho, Yong Sik;Kim, Hyoun-Young
    • The Korean Journal of Mycology
    • /
    • v.42 no.4
    • /
    • pp.282-288
    • /
    • 2014
  • In this study, we attempted to isolate fungi from soybean fermented foods produced in Sunchang County and to identify Aspergillus oryzae from fungal isolates. Ten fungal isolates were identified with ${\beta}$-tubulin gene. According to the sequences of ${\beta}$-tubulin gene, ten fungal isolates were identified as A. oryzae/flavus complex. For further identification of the ten of fungal isolates, omtA gene, one gene of the aflatoxin biosynthesis gene cluster, was sequenced and the sequences were compared with those of A. oryzae and A. flavus strains from the GenBank database. In addition, identification of the ten fungal isolates was further confirmed using the PCR amplicon of norB and cypA intergenic region, in which a deletion was recognized relative to A. flavus and A. parasiticus. The amplicon size of the ten fungal isolate strains was smaller than those of A. flavus and A. parasiticus, but the same as that of the reference A. oryzae strain. These results indicated that the ten isolates should be identified as A. oryzae. The protease activity in rice koji made with 6, 13, 17, 27, 37 and 38 of strain, respectively was twice higher than that in control. The kojis made with nine of the A. oryzae isolates, respectively, did not produce aflatoxin, suggesting that the strains could possibly be used as starters for soybean products.

Application for Identification of Food Raw Materials by PCR using Universal Primer (일반 프라이머를 이용한 PCR의 식품원료 진위 판별에 적용)

  • Park, Yong-Chjun;Jin, Sang-Ook;Lim, Ji-Young;Kim, Kyu-Heon;Lee, Jae-Hwang;Cho, Tae-Yong;Lee, Hwa-Jung;Han, Sang-Bae;Lee, Sang-Jae;Lee, Kwang-Ho;Yoon, Hae-Seong
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.317-324
    • /
    • 2012
  • In order to determine an authenticity of food ingredient, we used DNA barcode method by universal primers. For identification of animal food ingredients, LCO1490/HCO2198 and VF2/FISH R2 designed for amplifying cytochrome c oxidase subunit1 (CO1) region and L14724/H15915 for cytochrome b (cyt b) region on mitochondrial DNA were used. Livestock (cow, pig, goat, sheep, a horse and deer) was amplified by LCO1490/HCO 2198, VF2/FISH R2 and L14724/H15915 primers. Poultry (chicken, duck, turkey and ostrich) was amplified by LCO1490/HCO 2198 and VF2/FISH R2 primers. But, Fishes (walleye pollack, herring, codfish, blue codfish, trout, tuna and rockfish) were only amplified by VF2/FISH R2 primers. For plant food ingredients, 3 types of primers (trnH/psbA, rpoB 1F/4R and rbcL 1F/724R) have been used an intergenic spacer, a RNA polymerase beta subunit and a ribulose bisphosphate carboxylase region on plastid, respectively. Garlic, onion, radish, green tea and spinach were amplified by trnH/psbA, rpoB 1F/4R and rbcL 1F/724R. The PCR product sizes were same by rpoB 1F/4R and rbcL 1F/724R but, the PCR product size using trnH/psbA primer was different with others for plants each. We established PCR condition and universal primer selection for 17 item's raw materials for foods and determine base sequences aim to PCR products in this study. This study can apply to determine an authenticity of foods through making an comparison between databases and base sequences in gene bank. Therefore, DNA barcode method using universal primers can be a useful for species identification techniques not only raw materials but also processed foods that are difficult to analyze by chemical analysis.