• Title/Summary/Keyword: interference priority (IP)

Search Result 3, Processing Time 0.015 seconds

Interference Priority: A New Scheme for Prioritized Resource Allocation in Wireless

  • Lozano, Angel;Biglieri, Ezio;Alrajeh, Nabil
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.487-494
    • /
    • 2012
  • A standard paradigm for the allocation of wireless resources in communication demands symmetry, that is, all users are assumed to be on equal footing and hence get equal shares of the system's communication capabilities. However, there are situations in which "prime users" should be given priority, as for example in the transmission of emergency messages. We examine prioritization policies that could be implemented at the physical layer and propose a new one, termed interference priority (IP), which is shown to have excellent performance. We evaluate the performance of these prioritization techniques both in controlled settings and within the context of a full cellular system and discuss the impact of prioritized use of resources on the unprioritized users.

Gateway Strategies for VoIP Traffic over Wireless Multihop Networks

  • Kim, Kyung-Tae;Niculescu, Dragos;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.24-51
    • /
    • 2011
  • When supporting both voice and TCP in a wireless multihop network, there are two conflicting goals: to protect the VoIP traffic, and to completely utilize the remaining capacity for TCP. We investigate the interaction between these two popular categories of traffic and find that conventional solution approaches, such as enhanced TCP variants, priority queues, bandwidth limitation, and traffic shaping do not always achieve the goals. TCP and VoIP traffic do not easily coexist because of TCP aggressiveness and data burstiness, and the (self-) interference nature of multihop traffic. We found that enhanced TCP variants fail to coexist with VoIP in the wireless multihop scenarios. Surprisingly, even priority schemes, including those built into the MAC such as RTS/CTS or 802.11e generally cannot protect voice, as they do not account for the interference outside communication range. We present VAGP (Voice Adaptive Gateway Pacer) - an adaptive bandwidth control algorithm at the access gateway that dynamically paces wired-to-wireless TCP data flows based on VoIP traffic status. VAGP continuously monitors the quality of VoIP flows at the gateway and controls the bandwidth used by TCP flows before entering the wireless multihop. To also maintain utilization and TCP performance, VAGP employs TCP specific mechanisms that suppress certain retransmissions across the wireless multihop. Compared to previous proposals for improving TCP over wireless multihop, we show that VAGP retains the end-to-end semantics of TCP, does not require modifications of endpoints, and works in a variety of conditions: different TCP variants, multiple flows, and internet delays, different patterns of interference, different multihop topologies, and different traffic patterns.

VERIFICATION OF ELECTROMAGNETIC EFFECTS FROM WIRELESS DEVICES IN OPERATING NUCLEAR POWER PLANTS

  • YE, SONG-HAE;KIM, YOUNG-SIK;LYOU, HO-SUN;KIM, MIN-SUK;LYOU, JOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.729-737
    • /
    • 2015
  • Wireless communication technologies, especially smartphones, have become increasingly common. Wireless technology is widely used in general industry and this trend is also expected to grow with the development of wireless technology. However, wireless technology is not currently applied in any domestic operating nuclear power plants (NPPs) because of the highest priority of the safety policy. Wireless technology is required in operating NPPs, however, in order to improve the emergency responses and work efficiency of the operators and maintenance personnel during its operation. The wired telephone network in domestic NPPs can be simply connected to a wireless local area network to use wireless devices. This design change can improve the ability of the operators and personnel to respond to an emergency situation by using important equipment for a safe shutdown. IEEE 802.11 smartphones (Wi-Fi standard), Internet Protocol (IP) phones, personal digital assistant (PDA) for field work, notebooks used with web cameras, and remote site monitoring tablet PCs for on-site testing may be considered as wireless devices that can be used in domestic operating NPPs. Despite its advantages, wireless technology has only been used during the overhaul period in Korean NPPs due to the electromagnetic influence of sensitive equipment and cyber security problems. This paper presents the electromagnetic verification results from major sensitive equipment after using wireless devices in domestic operating NPPs. It also provides a solution for electromagnetic interference/radio frequency interference (EMI/RFI) from portable and fixed wireless devices with a Wi-Fi communication environment within domestic NPPs.