• 제목/요약/키워드: interference networks

검색결과 862건 처리시간 0.024초

Energy Efficiency Optimization for multiuser OFDM-based Cognitive Heterogeneous networks

  • Ning, Bing;Zhang, Aihua;Hao, Wanming;Li, Jianjun;Yang, Shouyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2873-2892
    • /
    • 2019
  • Reducing the interference to the licensed mobile users and obtaining the energy efficiency are key issues in cognitive heterogeneous networks. A corresponding rate loss constraint is proposed to be used for the sensing-based spectrum sharing (SBSS) model in cognitive heterogeneous networks in this paper. Resource allocation optimization strategy is designed for the maximum energy efficiency under the proposed interference constraint together with average transmission power constraint. An efficiency algorithm is studied to maximize energy efficiency due to the nonconvex optimal problem. Furthermore, the relationship between the proposed protection criterion and the conventional interference constraint strategy under imperfect sensing condition for the SBSS model is also investigated, and we found that the conventional interference threshold can be regarded as the upper bound of the maximum rate loss that the primary user could tolerate. Simulation results have shown the effectiveness of the proposed protection criterion overcome the conventional interference power constraint.

Interference-free Clustering Protocol for Large-Scale and Dense Wireless Sensor Networks

  • Chen, Zhihong;Lin, Hai;Wang, Lusheng;Zhao, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1238-1259
    • /
    • 2019
  • Saving energy is a big challenge for Wireless Sensor Networks (WSNs), which becomes even more critical in large-scale WSNs. Most energy waste is communication related, such as collision, overhearing and idle listening, so the schedule-based access which can avoid these wastes is preferred for WSNs. On the other hand, clustering technique is considered as the most promising solution for topology management in WSNs. Hence, providing interference-free clustering is vital for WSNs, especially for large-scale WSNs. However, schedule management in cluster-based networks is never a trivial work, since it requires inter-cluster cooperation. In this paper, we propose a clustering method, called Interference-Free Clustering Protocol (IFCP), to partition a WSN into interference-free clusters, making timeslot management much easier to achieve. Moreover, we model the clustering problem as a multi-objective optimization issue and use non-dominated sorting genetic algorithm II to solve it. Our proposal is finally compared with two adaptive clustering methods, HEED-CSMA and HEED-BMA, demonstrating that it achieves the good performance in terms of delay, packet delivery ratio, and energy consumption.

Interference Aware Channel Assignment Algorithm for D2D Multicast Underlying Cellular Networks

  • Zhao, Liqun;Ren, Lingmei;Li, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2648-2665
    • /
    • 2022
  • Device-to-device (D2D) multicast has become a promising technology to provide specific services within a small geographical region with a high data rate, low delay and low energy consumption. However, D2D multicast communications are allowed to reuse the same channels with cellular uplinks and result in mutual interference in a cell. In this paper, an intelligent channel assignment algorithm is designed in D2D underlaid cellular networks with the target of maximizing network throughput. We first model the channel assignment problem to be a throughput maximizing problem which is NP-hard. To solve the problem in a feasible way, a novel channel assignment algorithm is proposed. The key idea is to find the appropriate cellular communications and D2D multicast groups to share a channel without causing critical interference, i.e., finding a channel for a D2D multicast group which generates the least interference to network based on current channel assignment status. In order to show the efficacy and effectiveness of our proposed algorithm, a novel search algorithm is proposed to find the near-optimal solution as the baseline for comparisons. Simulation results show that the proposed algorithm improves the network throughput.

펨토셀 기반 계층셀 구조 시스템 용량 및 서비스 반경 분석 (System Capacity and Coverage Analysis of Hierarchical Femtocell Networks)

  • 오남걸;김훈
    • 한국통신학회논문지
    • /
    • 제34권6A호
    • /
    • pp.476-483
    • /
    • 2009
  • 최근 들어 실내에서의 고속 무선 통신과 음영지역 해소를 위한 해결책의 하나로 옥내용 기지국인 펨토셀(femtocell)을 활용하는 계층구조 방안이 제시되고 있으며, 이동통신 표준화 단체에서 관련 이슈에 대한 표준화 작업이 활발히 진행되고 있다. 그러나 펨토셀 환경에서 발생할 수 있는 여러 가지 기술적 문제들이 존재하며 그 중 가장 중요한 문제가 간섭으로 인한 시스템의 열화이다. 따라서 전체 시스템의 안정적이고 효율적인 운용을 위해 펨토셀 환경에서의 상호 간섭과 이에 따른 시스템 성능 분석이 요구된다. 본 고에서는 펨토셀 설치 주변의 다양한 전파 환경을 고려하여 매크로셀(macrocell)이나 펨토셀간 상호 간섭에 따른 시스템 용량 및 서비스 영역을 살펴본다. 특히 펨토셀의 주 설치 지역이 되는 실내 환경에서 매크로셀과 펨토셀간의 거리, 펨토셀 내에서 사용자의 위치, 옥내 구조물의 특징 등을 반영한 의전파전파 모델을 적용하고 그에 따른 주파수 효율성과 서비스 반경 등의 시스템 성능을 분석한다.

해양 이종 네트워크 환경에서 인접 셀 간섭 제어를 고려한 하향링크 시스템 레벨 시뮬레이터 개발 (Downlink System Level Simulator for Enhanced Inter-Cell Interference Coordination in Maritime Heterogeneous Networks)

  • 황태민;남유진;정민아;소재우
    • 한국통신학회논문지
    • /
    • 제40권7호
    • /
    • pp.1424-1432
    • /
    • 2015
  • 해양 산업과 IT 기술의 융합으로 해상 통신에 대한 여러 무선통신 기술들이 논의됨에 따라 채널 선택에 따른 간섭 제어, 시간영역에서 간섭 제어 등 다양한 간섭 제어 방법이 시도되고 있다. 이를 위해 본 논문에서는 다양한 해양 통신 환경에서 시스템의 성능을 측정하고 검증 및 평가할 수 있도록 하향링크 시스템 레벨 시뮬레이터를 구현하였다. 제안하는 시뮬레이터는 기존의 이동통신 시뮬레이터와 달리 해상에서 선박 간 신호간섭을 조정할 수 있도록 3GPP Release 10의 주요 기술 enhanced inter-cell interference coordination(eICIC)을 적용하였다. 또한 개발한 시스템 레벨 시뮬레이터를 사용하여 eICIC의 주요 기술인 almost blank subframes(ABS)와 cell range expansion(CRE) 변화에 따른 소형 셀의 수율 분포를 도출하였다.

Interference Coordination for Device-to-Device (D2D) under Multi-channel of Cellular Networks

  • Zulkifli, Aunee Azrina;Huynh, Thong;Kuroda, Kaori;Hasegawa, Mikio
    • Journal of Multimedia Information System
    • /
    • 제3권4호
    • /
    • pp.135-140
    • /
    • 2016
  • To improve the throughput of Device-to-Device (D2D) communication, we focus on the scenario where D2D pair can reuse multi-channel of cellular communication. However, as sharing same channel with cellular communication can cause interference between D2D communication and cellular communication, a proper interference management is needed. In this paper, we propose interference-based channel allocation to select the channels to be used by D2D communication and a solution from game theory perspective to optimize the D2D communication throughput under multi-channel as well as guarantee the interference from it to cellular network. The simulation results verify the stability of the proposed method.

Hypergraph Game Theoretic Solutions for Load Aware Dynamic Access of Ultra-dense Small Cell Networks

  • Zhu, Xucheng;Xu, Yuhua;Liu, Xin;Zhang, Yuli;Sun, Youming;Du, Zhiyong;Liu, Dianxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.494-513
    • /
    • 2019
  • A multi-channel access problem based on hypergraph model in ultra-dense small cell networks is studied in this paper. Due to the hyper-dense deployment of samll cells and the low-powered equipment, cumulative interference becomes an important problem besides the direct interference. The traditional binary interference model cannot capture the complicated interference relationship. In order to overcome this shortcoming, we use the hypergraph model to describe the cumulative interference relation among small cells. We formulate the multi-channel access problem based on hypergraph as two local altruistic games. The first game aims at minimizing the protocol MAC layer interference, which requires less information exchange and can converge faster. The second game aims at minimizing the physical layer interference. It needs more information interaction and converges slower, obtaining better performance. The two modeled games are both proved to be exact potential games, which admit at least one pure Nash Equilibrium (NE). To provide information exchange and reduce convergecne time, a cloud-based centralized-distributed algorithm is designed. Simulation results show that the proposed hypergraph models are both superior to the existing binary models and show the pros and cons of the two methods in different aspects.

Efficient Multicast Tree Construction in Wireless Mesh Networks

  • Nargesi, Amir-Abbas;Bag-Mohammadi, Mozafar
    • Journal of Communications and Networks
    • /
    • 제16권6호
    • /
    • pp.613-619
    • /
    • 2014
  • Multicast routing algorithms designed for wireline networks are not suitable for wireless environments since they cannot efficiently exploit the inherent characteristics of wireless networks such as the broadcast advantage. There are many routing protocols trying to use these advantages to decrease the number of required transmissions or increase the reception probability of data (e.g., opportunistic routing).Reducing the number of transmissions in a multicast tree directly decreases the bandwidth consumption and interference and increases the overall throughput of the network. In this paper, we introduce a distributed multicast routing protocol for wireless mesh networks called NCast which take into account the data delivery delay and path length when constructing the tree. Furthermore, it effectively uses wireless broadcast advantage to decrease the number of forwarding nodes dynamically when a new receiver joins the tree.Our simulation results show that NCast improves network throughput, data delivery ratio and data delivery delay in comparison with on demand multicast routing protocol. It is also comparable with multichannel multicast even though it does not use channeling technique which eliminates the interference inherently.

Scheduling and Feedback Reduction in Coordinated Networks

  • Bang, Hans Jorgen;Orten, Pal
    • Journal of Communications and Networks
    • /
    • 제13권4호
    • /
    • pp.339-344
    • /
    • 2011
  • Base station coordination has received much attention as a means to reduce the inter-cell interference in cellular networks. However, this interference reducing ability comes at the expense of increased feedback, backhaul load and computational complexity. The degree of coordination is therefore limited in practice. In this paper, we explore the trade-off between capacity and feedback load in a cellular network with coordination clusters. Our main interest lies in a scenario with multiple fading users in each cell. The results indicate that a large fraction of the total gain can be achieved by a significant reduction in feedback. We also find an approximate expression for the distribution of the instantaneous signal to interference-plus-noise ratio (SINR) and propose a new effective scheduling algorithm.

Interference Alignment Based Transceiver Design in OSG mode of HetNets

  • Niu, Qin;Zeng, Zhimin;Zhang, Tiankui;Hu, Zhirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권6호
    • /
    • pp.2014-2034
    • /
    • 2015
  • This paper focuses on solving co-channel interference (CCI) issues arising in the open subscriber group (OSG) mode of heterogeneous networks (HetNets). Considering a general framework consisting of arbitrary number of picocells within a macro cell, where the inter-user interference (IUI) is the main CCI to macro user equipments (UEs), while the the inter-cell interference (ICI) is the major CCI to pico UEs. In this paper, three IA based transceiver design schemes are proposed. For macro cell, we uniformly use block diagonalization (BD) scheme to eliminate the IUI. And for picocells, three IA schemes are proposed to mitigate the ICI. The first scheme, named as zero forcing IA (ZF-IA) scheme, aligns the inter picocell interference onto an arbitrary sub-space of the cross-tier interference using ZF scheme. Considering the channel state information (CSI) of the desired channel of pico UEs, the second scheme, named as optimal desired sub-channel selected IA (ODC-IA) scheme, aligns the inter picocell interference onto a certain sub-space of the cross-tier interference, which guarantees the largest channel gain of the desired signal of pico UEs. The third IA scheme, named as maximum cross-tier interference selected IA (MI-IA) scheme, is designed for the system with less receive antennas. The inter picocell interference is aligned onto the space of the strongest cross-tier interference and only the interference on this space is nullified. The complexity analysis and simulations show that the proposed transceiver design schemes outperform the existing IA schemes in the OSG mode of HetNets, and the MI-IA scheme reduces the requirement of the receive antennas number with lower complexity.