• Title/Summary/Keyword: interfacial thermal resistance

Search Result 62, Processing Time 0.023 seconds

Electrical Characteristics of Ni/Ti/Al Ohmic Contacts to Al-implanted p-type 4H-SiC (Al 이온 주입된 p-type 4H-SiC에 형성된 Ni/Ti/Al Ohmic Contact의 전기적 특성)

  • Joo, Sung-Jae;Song, Jae-Yeol;Kang, In-Ho;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.968-972
    • /
    • 2008
  • Ni/Ti/Al multilayer system ('/'denotes the deposition sequence) was tested for low-resistance ohmic contact formation to Al-implanted p-type 4H-SiC. Ni 30 nm / Ti 50 nm / Al 300 nm layers were sequentially deposited by e-beam evaporation on the 4H-SiC samples which were implanted with Al (norminal doping concentration = $4\times10^{19}cm^{-3}$) and then annealed at $1700^{\circ}C$ for dopant activation. Rapid thermal anneal (RTA) temperature for ohmic contact formation was varied in the range of $840\sim930^{\circ}C$. Specific contact resistances were extracted from the measured current vs. voltage (I-V) data of linear- and circular transfer length method (TLM) patterns. In constrast to Ni contact, Ni/Ti/Al contact shows perfectly linear I-V characteristics, and possesses much lower contact resistance of about $2\sim3\times10^{-4}\Omega{\cdot}cm^2$ even after low-temperature RTA at $840^{\circ}C$, which is about 2 orders of magnitude smaller than that of Ni contact. Therefore, it was shown that RTA temperature for ohmic contact formation can be lowered to at least $840^{\circ}C$ without significant compromise of contact resistance. X-ray diffraction (XRD) analysis indicated the existence of intermetallic compounds of Ni and Al as well as $NiSi_{1-x}$, but characteristic peaks of $Ti_{3}SiC_2$, a probable narrow-gap interfacial alloy responsible for low-resistance Ti/Al ohmic contact formation, were not detected. Therefore, Al in-diffusion into SiC surface region is considered to be the dominant mechanism of improvement in conduction behavior of Ni/Ti/Al contact.

Sliding Wear Properties of Carbon Fiber Reinforced $Si_3N_4$ Ceramics (탄소섬유강화 질화규소 세라믹스의 마찰마모 특성)

  • Park Yi-Hyun;Yoon Han-Ki;Kim Bu-Ahn;Park Won-Jo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.347-351
    • /
    • 2004
  • [ $Si_3N_4$ ] composites have been extensively studied for engineering ceramics, because it has excellent room and high temperature strength, wear resistance properties, good resistance to oxidation, and good thermal and chemical stability. In the present work, carbon short fiber reinforced $Si_3N_4$ ceramics were fabricated by hot press method in $N_2$ atmosphere at $1800^{\circ}C$ using $Al_2O_3\;and\;Y_2O_3$ as sintering additives. Content of carbon short fiber was $0\%,\;0.1\%\;and\;0.3\%$. The composites were evaluated in terms of density, flexural strength and elastic modulus through the 3-point bending test at room temperature. Also, The wear behavior was determined by the pin on disk wear tester using silicon nitride ball. Experimental density and flexural strength decreased with increasing content of carbon fiber. But specific modulus increased with increasing content of carbon fiber. In addition, friction coefficient and specific wear loss decreased with increasing content of carbon short fiber by reason of interfacial defects between matrix and fiber.

  • PDF

Interfacial Properties and Sensing of Carbon Nanofiber/Tube and Electrospun Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Micromechanical Technique (전기저항측정 및 미세역학시험법을 이용한 탄소나노섬유/튜브 및 전기방사된 나노섬유/에폭시 복합재료의 계면특성 및 감지능 연구)

  • Jung Jin-Gyu;Kim Sung-Ju;Park Joung-Man
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2005
  • Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites have been investigated by using electro-micromechanical technique. The electrospun PVDF nanofibers were also prepared as a piezoelectric sensor. The electro-micromechanical techniques were applied to evaluate sensing response of carbon nanocomposites by measuring electrical resistance under an uniform cyclic loading. Composites with higher volume content of CNT showed significantly higher tensile properties than neat and low volume$\%$ CNT composites. CNT composites showed humidity sensing within limited temperature range. CNT composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to crystallinity increase, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also showed sensing effect on humidity and temperature as well as stress transferring. Nanocomposites and electrospun PVDF nanofiber web can be applicable for sensing application.

A Study on the Engine Oil Resistant Behaviors of Room Temperature Vulcanizing Silicone Adhesives (상온 경화형 실리콘 접착제의 내엔진 오일성에 관한 연구)

  • Park, Soo-Jin;Jin, Fan-Long;Kim, Jong-Hak;Joo, Hyeok-Jong;Kim, Joon-Hyung
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.196-203
    • /
    • 2005
  • In this work, the engine oil resistant evaluation and breakdown analysis of room temperature vulcanizing silicone adhesives were performed through the surface properties, thermal stabilities, adhesive strength, and morphology measurements. As a result, the permeation of engine oil into adhesive specimens was carried out from surface to center in the specimens. And the oil content in the adhesive specimens was increased and the Si-O-Si bond of the adhesives was decomposed with increasing the aging time. The TGA results indicated that the thermal degradation was mainly occurred at under and surfaces of the specimens. The tensile strength, elongation, and adhesive strength of the adhesives were significantly decreased after the engine oil resistant tests, which could be attributed to the initial lose of adhesive properties resulting from the engine oil absorption and thermal aging. And the failure mode of the adhesive specimens was changed from cohesive failure to interfacial failure.

Useful Effects of Fumed Silica Nanoparticles in an Ionic Liquid Electrolyte for High Temperature Supercapacitor (고온작동 수퍼커패시터용 이온성 액체 전해질에서의 흄드 실리카의 효과)

  • Kim, Dong Won;Jung, Hyunyoung
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • The demand for energy storage devices capable of operating at high temperatures is increasing. In order to operate at high temperatures, a device must have excellent thermal stability and no risk of explosion. Ionic liquids are electrolytes that satisfy the above conditions, and studies on improving their performance have attracted great interest. Here, we report the results of a study on the fabrication of a supercapacitor that has a composite electrolyte prepared by dispersing fumed silica in an ionic liquid. The fumed silica filler exhibits improved ionic conductivity and lower interfacial resistance. In particular, the silica nanoparticles with diameters of 10 nm exhibit better electrochemical properties than fillers of other diameters and have excellent device performance of 33 times higher than the pristine ionic liquid at high temperatures. This study can be used to improve the electrolytes of electrochemical devices, such as the next generation battery or lithium ion battery.

Effect of Ti Interlayer Thickness on Epitaxial Growth of Cobalt Silicides (중간층 Ti 두께에 따른 CoSi2의 에피텍시 성장)

  • Choeng, Seong-Hwee;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2003
  • Co/Ti bilayer structure in Co salicide process helps to the improvement of device speed by lowering contact resistance due to the epitaxial growth of $CoSi_2$layers. We investigated the epitaxial growth and interfacial mass transport of $CoSi_2$layers formed from $150 \AA$-Co/Ti structure with two step rapid thermal annealing (RTA). The thicknesses of Ti layers were varied from 20 $\AA$ to 100 $\AA$. After we confirmed the appropriate deposition of Ti film even below $100\AA$-thick, we investigated the cross sectional microstructure, surface roughness, eptiaxial growth, and mass transportation of$ CoSi_2$films formed from various Ti thickness with a cross sectional transmission electron microscopy XTEM), scanning probe microscopy (SPM), X-ray diffractometery (XRD), and Auger electron depth profiling, respectively. We found that all Ti interlayer led to$ CoSi_2$epitaxial growth, while $20 \AA$-thick Ti caused imperfect epitaxy. Ti interlayer also caused Co-Ti-Si compounds on top of $CoSi_2$, which were very hard to remove selectively. Our result implied that we need to employ appropriate Ti thickness to enhance the epitaxial growth as well as to lessen Co-Ti-Si compound formation.

High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes (독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터)

  • Kim, Dong Won;Jung, Hyunyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.

A study on the formation of cobalt silicide thin films in Co/Si systems with different capping layers (Co/Si 시스템에서 capping layer에 따른 코발트 실리사이드 박막의 형성에 관한 연구)

  • ;;;;;;;Kazuyuki Fujihara
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.335-340
    • /
    • 2000
  • We investigated the role of the capping layers in the formation of the cobalt silicide in Co/Si systems with TiN and Ti capping layers and without capping layers. The Co/Si interfacial reactions and the phase transformations by the rapid thermal annealing (RTA) processes were observed by sheet resistance measurements, XRD, SIMS and TEM analyses for the clean silicon substrate as well as for the chemically oxidized silicon substrate by $H_2SO_4$. We observed the retardation of the cobalt disilicide formation in the Co/Si system with Ti capping layers. In the case of Co/$SiO_2$/Si system, cobalt silicide was formed by the Co/Si reaction due to with the dissociation of the oxide layer by the Ti capping layers.

  • PDF

A Study of Damage Sensing and Repairing Effect of CNT Nanocomposites (손상감지용 CNT 나노복합재료의 손상 감지능 및 보강효과 연구)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.219-224
    • /
    • 2014
  • Nancomposites manufacture has been developed rapidly, because of reinforcing effects of CNT in terms of mechanical, electrical and thermal properties. In this study, 10 wt% CNT paste was fabricated with good dispersion state and easy processability. Damage sensing and reinforcing effect of CNT paste were investigated in nanocomposites. 10 wt% CNT paste exhibited better tensile and flexural properties than those of general 1 wt% CNT nanocomposites. To observe the healing effect of CNT paste, a crack was made artificially with 30wt% CF30wt%/PP composites, and the CNT paste was filled inside the crack. The damage sensing of CNT paste in CF30wt%/PP composites was investigated by electrical resistance measurement and mechanical tests. CNT paste exhibited good reinforcing effect in mechanical properties of CF30wt%/PP composites, and this reinforcing effect was getting better with larger cracks. The reason was because CNT paste had good interfacial adhesion with CF30wt%/PP composites to resist crack propagation. In electrical resistance measurement, there was a jump in electrical resistance signal at the adhesion interface. The jumping signal could be used to predict fracture of CF/PP composites. CNT nanocomposites for damage sensing had crack reducing effect and damage detection using electrical resistance method.

Development of Cobalt-free $La_xSr_{4-x}Fe_6O_{13}$ ($0{\leq}x{\leq}2$) Intergrowth Cathode Material for Solid Oxide Fuel Cells

  • Lee, Seung-Jun;Yong, Seok-Min;Kim, Dong-Seok;Kim, Do-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.45.1-45.1
    • /
    • 2011
  • Cobalt-free $La_xSr_{4-x}Fe_6O_{13}$ ($0{\leq}x{\leq}2$) oxide have been synthesized and investigated as a potential cathode material for solid oxide fuel cells (SOFCs). $Sr_4Fe_6O_{13}$ consists of alternating perovskite layers ($Sr_4Fe_2O_8$) containing iron cations in octahedral oxygen coordination and $Fe_4O_5$ layers where iron cations have 5-fold coordination of two types-square pyramids and trigonal bipyramids. Our preliminary electrochemical testes of pristine $Sr_4Fe_6O_{13}$ show a rather high area specific resistance ($0.47{\Omega}cm^2$ at $700^{\circ}C$) for ~20 ${\mu}m$ thick layers with CGO electrolyte. The electrochemical performances are improved by La addition up to x=1 ($La_1Sr_3Fe_6O_{13}$, $0.06{\Omega}cm^2$ at $700^{\circ}C$). In addition, thermal expansion coefficient (TEC) values of $La_1Sr_3Fe_6O_{13}$ specimen demonstrated $15.1{\times}10^{-6}\;^{\circ}C^{-1}$ in the range of 25-900$^{\circ}C$, which provides good thermal expansion compatibility with the CGO electrolyte. An electrolyte supported (300-${\mu}m$-thick) single-cell configuration of $La_1Sr_3Fe_6O_{13}$/CGO/Ni-CGO delivered a maximum power density of 584 $mWcm^{-2}$ at $700^{\circ}C$. In addition, an anode supported single cell by YSZ electrolyte (10-${\mu}m$-thick) with a porous CGO interlayer between the cathode and the electrolyte to avoid undesired interfacial reactions exhibited 1,517 $mWcm^{-2}$ at $800^{\circ}C$. The unique composition of $La_1Sr_3Fe_6O_{13}$ with low thermal expansion coefficient and higher electrochemical properties could be a good cathode candidate for intermediate temperature SOFCs with CGO and YSZ electrolyte.

  • PDF