• Title/Summary/Keyword: interfacial change

Search Result 214, Processing Time 0.037 seconds

NUMERICAL SIMULATION OF BOILING PHENOMENA USING A LEVEL-SET METHOD (Level-Set 방법을 이용한 비등현상 해석)

  • Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.218-222
    • /
    • 2009
  • A level-set (LS) method is presented for computation of boiling phenomena which involve liquid-vapor interfaces that evolve, merge and break up in time, the flow and temperature fields influenced by the interfacial motion, and the microlayer that forms between the solid and the vapor phase near the wall. The LS formulation for tracking the phase interfaces is modified to include the effects of phase change on the liquid-vapor interface and contact angle on the liquid-vapor-solid interline. The LS method can calculate an interface curvature accurately by using a smooth distance function. Also, it is straightforward to implement for two-phase flows in complex geometries. The numerical method is applied for analysis of nucleate boiling on a horizontal surface and film boiling on a horizontal cylinder.

  • PDF

Modification and adhesion improvement of BN interfacial layers by Post-N+ implantation (질소 이온주입법에 의한 BN 박막의 계면구조 개선 및 밀착력 향상)

  • 변응선;이성훈;이상로;이구현;한승희;이응직;윤재홍
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.157-164
    • /
    • 1999
  • The post ion implantation has been applied to modify early-grown BN layer and improve the adhesion of the BN films. The effect of ion implantation doses on microstructure and interlayer was investigated by FTIR and HRTEM. And the hardness and delamination life time of N+-implanted BN films were measured. With increasing the ion dose up to $5.0\times10^{15}\textrm{atoms/cm}^2$,the change of IR spectrum is observed. At $5.0\times10^{16}\textrm{atoms/cm}^2$, a drastic transition of cubic phase into hexagonal phase is detected. The change of microstructure of early-grown layers by ion implantation is confirmed using HRTEM. Both microhardness and delamination life time of BN films increase with ion dose. The modification model of early-grown BN layers is briefly discussed based on the displacement per atom and excess boron in the BN film induced by ion irradiation.

  • PDF

Interrelationship Between the Drift-flux Model and the Two-fluid Model (드리프트 플럭스 모델과 2-유체 모델 사이의 상관 관계)

  • No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.233-236
    • /
    • 1993
  • For one-dimensional two-phase flow without phase change and without axially-temporally rapid change of pressure, the interrelationship between the drift-flux model and the two-fluid model is studied. It is derived on the basis of the fact that the vapor conservation equation is related to the momentum equation by the drift flux. Starting from the two-fluid model, we obtain the interfacial friction expressed in terms of drift-flux parameter. Also, by deriving the void propagation equation, the drift-flux is shown to have jnterrelationship with forces in the two-fluid model.

  • PDF

Numerical Study on a Sliding Bubble During Nucleate Boiling

  • Son, Gihun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.931-940
    • /
    • 2001
  • A numerical method for simulating bubble motion during nucleate boiling is presented. The vapor-liquid interface is captured by a level set method which can easily handle breaking and merging of the interface and can calculate an interfacial curvature more accurately than the VOF method using a step function. The level set method is modified to include the effects of phase change at the interface and contact angle at the wall as well as to achieve mass conservation during the whole calculation procedure. Also, a simplified model to predict the heat flux in a thin liquid microlayer is developed. The method is applied for simulation of a sliding bubble on a vertical surface to further understand the physics of partial boiling. Based on the computed results, the effects of contact angle, wall superheat and phase change on a sliding bubble are quantified.

  • PDF

NUMERICAL ANALYSIS OF MULTIPHASE FLOW BY NUFLEX (NUFLEX의 다상유동 해석)

  • Son, Gi-Hun;Suh, Young-Ho;YU, Tae-Jin;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.95-98
    • /
    • 2007
  • A general purpose program NUFLEX has been extended for two-phase flows with topologically complex interface and cavitation flows with liquid-vapor phase change caused by large pressure drop. In analysis of two-phase flow, the phase interfaces are tracked by employing a LS(Level Set) method. Compared with the VOF(Volume-of-Fluid} method based on a non-smooth volume-fraction function, the LS method can calculate an interfacial curvature more accurately by using a smooth distance function. Also, it is quite straightforward to implement for 3-D irregular meshes compared with the VOF method requiring much more complicated geometric calculations. Also, the cavitation process is computed by including the effects of evaporation and condensation for bubble formation and collapse as well as turbulence in flows. The volume-faction and continuity equations are adapted for cavitation models with phase change. The LS and cavitation formulation are implemented into a general purpose program for 3-D flows and verified through several test problems.

  • PDF

The Interfacial Electronic Structure of Organic-organic Heterojunction: Effect of Molecular Orientation

  • Jo, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.114.2-114.2
    • /
    • 2014
  • The orientation of the constituent molecules in organic thin film devices can affect significantly their performance due to the highly anisotropic nature of ${\pi}$-conjugated molecules. We report here an angle dependent x-ray absorption study of the control of such molecular orientation using well-ordered interlayers for the case of a bilayer heterojunction of chloroaluminum phthalocyanine (ClAlPc) and C60. Furthermore, the orientation-dependent energy level alignment of the same bilayer heterojunction has been measured in detail using synchrotron radiation-excited photoelectron spectroscopy. Regardless of the orientation of the organic interlayer, we find that the subsequent ClAlPc tilt angle improves the ${\pi}-{\pi}$ interaction at the interface, thus leading to an improved short-circuit current in photovoltaic devices based on ClAlPc/C60. The use of the interlayers does not change the effective band gap at the ClAlPc/C60 heterointerface, resulting in no change in open-circuit voltage.

  • PDF

Review of interface engineering for high-performance all-solid-state batteries (계면 제어를 기반으로 한 고성능 전고체 전지 연구)

  • Insu, Hwang;Hyeon Jeong, Lee
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

Interfacial Properties and Stress-Cure Sensing of Single-Shape Memory Alloy (SMA) Fiber/Epoxy Composites using Electro-Micromechanical Techniques (미세역학적 시험법을 이용한 단-섬유 형태 형상기억합금/에폭시 복합재료의 계면특성 및 응력-경화 감지능)

  • Jang, Jung-Hoon;Kim, Pyung-Gee;Wang, Zuo-Jia;Lee, Sang-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • It is well know that the structure of shape memory alloy (SMA) can change from martensite austenite by either temperature or stress. Due to their inherent shape recovery properties, SMA fiber can be used such as for stress or cure-monitoring sensor or actuator, during applied stress or temperature. Incomplete superelasticity was observed as the stress hysteresis at stress-strain curve under cyclic loading test and temperature change. Superelasticity behavior was observed for the single-SMA fiber/epoxy composites under cyclic mechanical loading at stress-strain curve. SMA fiber or epoxy embedded SMA fiber composite exhibited the decreased interfacial properties due to the cyclic loading and thus reduced shape memory performance. Rigid epoxy and the changed interfacial adhesion between SMA fiber and epoxy by the surface treatment on SMA fiber exhibited similar incomplete superelastic trend. Epoxy embedded single SMA fiber exhibited the incomplete recovery during cure process by remaining residual heat and thus occurring residual stress in single SMA fiber/epoxy composite.

  • PDF

Effects of Microstructural Change in Joint Interface on Mechanical Properties of Si3N4/S.S316 joint with Ni Buffer layer (Ni buffer layer를 사용한 Si3N4/S.S316 접합체에서 접합계면의 미세구조 변화가 접합체의 기계적 특성에 미치는 영향)

  • 장희석;박상환;권혁보;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.381-387
    • /
    • 2000
  • Si3N4/stainless steel 316 joints with Ni buffer layer were fabricated by direct active brazing method (DIB) using Ag-Cu-Ti brazing alloy only and double brazing method (DOB) using Ag-Cu brazing alloy with Si3N4 pretreated with Ag-Cu-Ti brazing alloy. For the joint brazed by DIB method, Ti was segregated at the Si3N4/brazing alloy interface, but was not enough to form a stable joint interface. In addition, large amounts of Ni-Ti inter-metallic compounds were formed in tehbrazing alloy near the joint interface, which could deplete the contents of Ti involved in the interfacial reaction. However, for the joint brazed by DOB method, segregation of Ti at the joint interface were enough to enhance the formation of stable interfacial reaction products such as TiN and Ti-Si-Ni-N-(Cu) multicompounds, which restricted the formation of Ni-Tio inter-metallic compounds in the brazing alloy during brazing with Ni buffer layer. Fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was much improved by using DOB method rather than DIB method. It could be deduced that the differences of fracture strength of the joint with Ni buffer layer depending on brazing process adapted were directly affected by the formation of stable joint interface and the change in microstructure of the brazing alloy near the joint interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of Ni buffer layer in the joint was increased from 0.1 mm to 10 mm. It seems to due to the increased residual stress in the joint as the thickness of Ni buffer layer is increased. The maximum fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was 386 MPa, and the fracture of joint was originated at Si3N4/brazing alloy joint interface and propagated into Si3N4 matrix.

  • PDF

Influence of Acid and Base Surface Treatment of Multi-Walled Carbon Nanotubes on Mechanical Interfacial Properties of Carbon Fibers-Reinforced Composites (산-염기 표면처리된 MWNTs의 첨가가 탄소섬유 강화 복합재료의 기계적 계면특성에 미치는 영향)

  • Jung, Gun;Nah, Chang-Woon;Seo, Min-Kang;Byun, Joon-Hyung;Lee, Kyu-Hwan;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.612-616
    • /
    • 2012
  • In this work, the effect of chemical treatments of multi-walled carbon nanotubes (MWNTs) on the mechanical interfacial properties of carbon fiber fabric-reinforced composites was investigated. The surface properties of the MWNTs were determined by acid and base values, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses. The mechanical interfacial properties of the composites were assessed by interlaminar shear stress (ILSS) and critical stress intensity factor ($K_{IC}$). The chemical treatments based on acid and base reactions led to a significant change of surface characteristics of the MWNTs, especially A-MWNTs/carbon fibers/epoxy composites had higher mechanical properties than those of B-MWNTs and non-treated MWNTs/carbon fibers/epoxy composites. These results were probably due to the improvement of interfacial bonding strength, resulting from the acid-base interaction and hydrogen bonding between the epoxy resins and the MWNT fillers.