• Title/Summary/Keyword: interface treatment

Search Result 904, Processing Time 0.031 seconds

In-situ Observation on Micro-Fractural Behavior and Strength Characteristics in Sn-4.0wt%Ag-0.5wt%Cu Solder Joint Interface (Sn-4.0wt%Ag-0.5wt%Cu 솔더 접합계면의 강도특성과 미세파괴거동에 대한 In-situ관찰)

  • Lee, Kyung-Keun;Choi, Eun-Geun;Chu, Yong-Ho;Kim, Jin-Soo;Lee, Byung-Soo;Ahn, Haeng-Keun
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2008
  • The micro-structural changes, strength characteristics, and micro-fractural behaviors at the joint interface between a Sn-4.0wt%Ag-0.5wt%Cu solder ball and UBM treated by isothermal aging are reported. From the reflow process for the joint interface, a small amount of intermetallic compound was formed. With an increase in the isothermal aging time, the type and amount of the intermetallic compound changed. The interface without an isothermal treatment showed a ductile fracture. However, with an increase in the aging time, a brittle fracture occurred on the interface due mainly to the increase in the size of the intermetallic compounds and voids. As a result, a drastic degradation in the shear strength was observed. From a microshear test by a scanning electron microscope, the generation of micro-cracks was initiated from the voids at the joint interface. They propagated along the same interface, resulting in coalescence with neighboring cracks into larger cracks. With an increase in the aging time, the generation of the micro-structural cracks was enhanced and the degree of propagation also accelerated.

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.

TP53I11 suppresses epithelial-mesenchymal transition and metastasis of breast cancer cells

  • Xiao, Tongqian;Xu, Zhongjuan;Zhang, Hai;Geng, Junsa;Qiao, Yong;Liang, Yu;Yu, Yanzhen;Dong, Qun;Suo, Guangli
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.379-384
    • /
    • 2019
  • Epithelial-mesenchymal transition (EMT) is widely-considered to be a modulating factor of anoikis and cancer metastasis. We found that, in MDA-MB-231 cells, TP53I11 (tumor protein P53 inducible protein 11) suppressed EMT and migration in vitro, and inhibited metastasis in vivo. Our findings showed that hypoxic treatment upregulated the expression of $HIF1{\alpha}$, but reduced TP53I11 protein levels and TP53I11 overexpression reduced $HIF1{\alpha}$ expression under normal culture and hypoxicconditions, and in xenografts of MDA-MB-231 cells. Considering $HIF1{\alpha}$ is a master regulator of the hypoxic response and that hypoxia is a crucial trigger of cancer metastasis, our study suggests that TP53I11 may suppress EMT and metastasis by reducing $HIF1{\alpha}$ protein levels in breast cancer cells.

Influence of Alkali or Silane Treatment of Waste Wool Fiber on the Mechanical Properties and Impact Strength of Waste Wool/Polypropylene Composites (폐양모/폴리프로필렌 복합재료의 기계적 특성 및 충격강도에 미치는 폐양모섬유의 알칼리처리 또는 실란처리 영향)

  • Kim, Kihyun;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.18 no.3
    • /
    • pp.118-126
    • /
    • 2017
  • In a natural fiber-reinforced composite material, many studies have been devoted to improving the interfacial adhesion between natural fiber and polymer matrix and the composite properties through various fiber surface modifications. In the present study, waste wool-reinforced polypropylene matrix composites were fabricated by compression molding and their mechanical and impact properties were characterized. As a result, the tensile and flexural properties and the impact strength of waste wool/polypropylene composites strongly depended on the treatment medium, alkali treatment with sodium hydroxide (NaOH) and silane treatment with 3-glycidylpropylsilane(GPS). The composite with waste wool by silane treatment exhibited higher mechanical properties and impact resistance than that by alkali treatment. The fracture surfaces of the composites support qualitatively the increased properties, showing the improved interfacial bonding between the waste wool and the polypropylene matrix.

AN EXPERIMENTAL STUDY OF INTERFACIAL ELEMENTAL TRANSITION IN CERAMO-METAL RESTORATION (도저용 착시 도재-금속 개면에서의 원소이동에 관한 실험적 연구)

  • Lee, Keun-Woo;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.95-118
    • /
    • 1987
  • This study was undertaken to observe the elemental transition of Interface depending on different pretreatment methods, the number of filings, the kinds of porcelain powders and the various alloys in ceramo-metal restoration. The materials used in this study were Pors-on $4^{(R)}$ and Ceramco porcelain powder to compare the differences depending on the pretreatement methods and the number of firings. Ceramco porcelain powder and Vita porcelain powder were used to compare the differences of elemental transition depending on the porcelain powders. The $Parasil^{(R)},\;PGV^{(R)}$ and Pors-on $4^{(R)}$ as Pd-Ag alloy were used to compare the difference of elemental transition depending on the various alloys. The pretreatment methods were : no treatment, treatment under vacuum and air, treatment with 50 % hydrofluoric acid and double heat tretament. The number of firings were 3, 5 and 7 repeated firings All specimens were observed by SEM and concentration of elements were analyzed quantitatively with EPMA The results of this study were obtained as follows : 1. In the groups of air-treatment, concentration of Sn were the highest and widest. A high concentration of In were in the groups of vacuum and air treatment. 2. There were no significant differences in concentration of Sn between the group of vacuum, 5 minutes hydrofluoric acid and double heat treatment. (p>0.05) 3. As the period of time of hydrofluoric acid treatment increased, not only were the trace elements reduced but the main components such as Pd and Ag were also reduced. 4. Concentration of Sn and In increased and diffused with repeated firings but 5 repeated and 7 repeated firings groups had no significant differences. (p>0.05) 5. Sn were more concentrated in the group of Ceramco porcelaion powder than Vita porcelain powder. 6. The higher concentration of trace elements in the alloy, the more increasing concentration of Sn and In in the interface.

  • PDF

Water Treatment Effect of Bamboo Fiber on the Mechanical Properties, Impact Strength, and Heat Deflection Temperature of Bamboo Fiber/PLA Biocomposites (대나무섬유/PLA 바이오복합재료의 기계적 특성, 충격강도 및 열변형온도에 미치는 대나무섬유 수처리의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.96-103
    • /
    • 2016
  • In this work, pellets consisting of cellulose-based natural fiber bamboo and poly(lactic acid) (PLA) was prepared by extrusion process and then bamboo fiber/PLA biocomposites with various fiber contents were produced by injection molding process. The water treatment effect of bamboo fibers on the flexural, tensile, and impact properties and heat deflection temperature of the biocomposites were investigated. The thermal stability of bamboo and the flexural properties, tensile modulus, and impact strength depended on the presence and absence of water treatment as well as on the fiber content, whereas the heat deflection temperature are influenced mainly by water treatment. The increase of the mechanical and impact properties of biocomposites is ascribed to the improvement of the interfacial adhesion between the bamboo fibers and the PLA matrix by the water treatment. The result suggests that the pre-treatment of natural fibers by using water, which is environment-friendly and labor-friendly, may contribute to enhancing the performance of biocomposites.

Interfacial Characteristics of Epoxy Composites Filled with γ-APS Treated Natural Zeolite (γ-APS로 표면처리된 천연 제올라이트/에폭시 복합재료의 계면특성)

  • Lee, Jae-Young;Lee, Sang-Keun;Kim, Sang-Wook
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • Epoxy composites filled with natural zeolite was prepared to investigate the effects of silane coupling agent, ${\gamma}$-APS (${\gamma}$-aminopropyltriethoxysilane)on the surface free energy, tensile properties and interfacial morphology. The value of Lifshitz-van der Waals component, ${\gamma}{\frac{LW}{SV}}$ for polar was $19.22mJ/m^2$ and increased, while that of Lewis acid-base component, ${\gamma}{\frac{AB}{SV}}$ for polar was $15.27mJ/m^2$ and decreased with the increasing content of ${\gamma}$-APS treatment. It is due that the surface of the zeolite is more coated by hydrophobic of alkyl group than hydrophilic amine or hydroxyl group. The tensile strength and Young's modulus of epoxy system were improved by the treatment with ${\gamma}$-APS due to the strong interface bonding, which was confirmed by SEM.

  • PDF

A STUDY ON THE CONNECTION MODALITY BETWEEN IMPLANT AND TOOTH IN OSSEOINTEGRATED PROSTHETIC TREATMENT USING FINITE ELEMENT ANALYSIS (골유착성 임플랜트 보철치료시 자연지대치와의 연결형태에 관한 유한요소적 응력분석 연구)

  • Kim Yong-Ho;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.1-32
    • /
    • 1991
  • Tho osseointegrated dental prosthetic treatment has develped for the edentulous patient with severely resorbed alveolar ridge, and has given us a successful clinical results to date. Nowadays the partially edentulism is included among the indications of the osseointegrated prosthetic treatment. The purpose of this study was to analyze the stress distribution at supporting bone according to the types of connection modality between implant and tooth in the superstructure. Two dimensional finite element stress analysis was applied for this study. FEM models were created using software Super SAP for MBM 16bit personal computer. Three modalities of connection were modeled and analyzed under load condition. The results were as follws: 1. The stress develped at tooth and implant in the cancellous bone was lower in the case of rigid connection than in the case of norigid connection, but higher between the two implants in the case of rigid connection than in the case of nonrigid connection. 2. The stress developed at the cortical bone and at the supporting bone interface was lower in the case of rigid connection than in the case of nonrigid connection 3. The stress developed at the supporting tissue interface of the implant nearby the tooth, was lower in the case of rigid connection than in the case of nonrigid connection. 4. The stress developed at the supporting tissue interface of posteriormost implant, was same between the cases of rigid and nonrigid connection. 5. The stress distribution related to the freestanding case was generally similar to the stress distribution pattern of nonrigid connection case. 6. The magnitude of applied load which produces deformation within elastic limit, had influence on the absolute value of stress, but had no influence on the pattern of stress distribution of the same case.

  • PDF