• 제목/요약/키워드: interface temperature

검색결과 2,042건 처리시간 0.029초

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2007년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

The Effect of Barrel Vibration Intensity to the Plating Thickness Distribution

  • Lee, Jun-Ho;Roselle D. Llido
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1999년도 추계학술발표회 초록집
    • /
    • pp.15-15
    • /
    • 1999
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the conventional rotating barrel. vibrational barrel (vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components, The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed that the average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value, Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components, However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. $2HD{\;}+{\;}e{\;}{\rightarrow}20H{\;}+{\;}H_2$ Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure thereby resulting to bad plating condition. 1 lot of chip was divided into two equal partion. Each portion was loaded to the same barrel one after the other. Nickel plating and tin-lead plating was performed in the same station. Portion A maintained the normal barrel vibration intensity and portion B vibration intensity was increased two steps higher. All other parameters, current, solution condition were maintained constant. Generally, plating method find procedures were carried out in a best way to maintained the best plating condition. After plating, samples were taken out from each portion. molded and polished. Plating thickness was investigated for both. To check consistency of results. 2nd trial was done now using different lot of another characteristics.

  • PDF

스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구 (A Study on High Speed Laser Welding by using Scanner and Industrial Robot)

  • 강희신;서정;김종수;김정오;조택동
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF

Sn-58Bi 솔더 페이스트와 ENIG 표면 처리된 기판 접합부의 계면 반응 및 접합강도 (Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate)

  • 신현필;안병욱;안지혁;이종근;김광석;김덕현;정승부
    • Journal of Welding and Joining
    • /
    • 제30권5호
    • /
    • pp.64-69
    • /
    • 2012
  • Sn-Bi eutectic alloy has been widely used as one of the key solder materials for step soldering at low temperature. The Sn-58Bi solder paste containing chloride flux was adopted to compare with that using the chloride-free flux. The paste was applied on the electroless nickel-immersion gold (ENIG) surface finish by stencil printing, and the reflow process was then performed at $170^{\circ}C$ for 10 min. After reflow, the solder joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 h in an oven. The interfacial microstructures were obtained by using scanning electron microscopy (SEM), and the composition of intermetallic compounds (IMCs) was analyzed using energy dispersive spectrometer (EDS). Two different IMC layers, consisting of $Ni_3Sn_4$ and relatively very thin Sn-Bi-Ni-Au were formed at the solder/surface finish interface, and their thickness increased with increasing aging time. The wettability of solder joints was investigated by wetting balance test. The mechanical property of each aging solder joint was evaluated by the ball shear test in accordance with JEDEC standard (JESD22-B117A). The results show that the highest shear force was measured when the aging time was 100 h, and the fracture mode changed from ductile fracture to brittle fracture with increasing aging time. On the other hand, the chloride flux in the solder paste did not affect the shear force and fracture mode of the solder joints.

Si(111)-$7{\times}7$ 면에서 Ti 성장과 C54 $TiSi_2$/Si(111) 정합 성장에 관하여 (Growth of Ti on Si(111)-)-$7{\times}7$ Surface and the Formation of Epitaxial C54 $TiSi_2$ on Si(111) Substrate)

  • Kun Ho Kim;In Ho Kim;Jeoung Ju Lee;Dong Ju Seo;Chi Kyu Choi;Sung Rak Hong;Soo Jeong Yang;Hyung Ho Park;Joong Hwan Lee
    • 한국진공학회지
    • /
    • 제1권1호
    • /
    • pp.67-72
    • /
    • 1992
  • 고에너지 반사 전자회절기(RHEED) 및 투과전자현미경(HRTEM)을 이용하여 Si(111)-7 $\times$ 7 면에서의 Ti 박막의 성장 mode와 Si(111) 면에서의 C54 TiSi2의 정합성장 을 조사하였다. 초고진공에서 Si(111)-7 $\times$ 7 표면에 상온에서 Ti를 증착하면 Ti/Si 계면에 서 비정질의 Ti-Si 중간막이 먼저 형성되고 그 위에 Ti 박막은 다결정으로 성장하였다. 160ML의 Ti를 증착한 시료를 초고진공 내에서 75$0^{\circ}C$로 10분 열처리하면 C54 TiSi2가 정합 성장하였으며 이는 HRTEM 격자상 및 TED Pattern으로 확인할 수 있었다. TiSi2/Si(111) 시 료를 다시 $900^{\circ}C$로 가열하면 TiSi2위에 단결정 Si층이 [111] 방향으로 성장하였다.

  • PDF

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1999년도 춘계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF

고분산 담지 금촉매 - I. 금의 첨가 효과 및 활성점 생성 - (Highly Dispersed Supported Gold Catalysts -I. Effect of Gold Addition and Active Site Formation-)

  • 안호근;히로오 니이야마
    • 공업화학
    • /
    • 제5권2호
    • /
    • pp.285-294
    • /
    • 1994
  • 몇 종류의 담지 금촉매를 통상의 함침법과 공침법에 의하여 제조하였다. 금입자의 크기, 산소의 흡착량, CO와 NO의 흡착특성 그리고 산화환원 특성 등의 조사를 통하여, 금의 첨가효과와 활성점의 생성에 관해 연구하였다. 함침법에 의한 촉매의 금입자들은 30~100nm 정도로 크고 균일하지 않았으나, 공침법에 의한 촉매는 약 4nm인 초미립자의 상태로 매우 균일하게 분산되어 있었다 $Au/Al_2O_3$촉매에 있어서, 불활성인 $Al_2O_3$에 금의 첨가로 $N_2O$의 분해가 일어났으며, CO의 비가역흡착은 일어나지 않았으나, $O_2$는 원자상으로 비가역흡착하였다. 산소의 흡착점은 활성점이 금입자 표면에 존재하는 원자 전부가 아니라 반구형인 금입자와 담체의 경계면 주위에 한정된 활성점이었다. 저온의 $Al_2O_3$에서는 CO의 가역흡착과 비가역흡착이 일어났지만, 소량의 금의 첨가에 의하여 어느 쪽의 흡착도 약해졌다. $Au/Co_3O_4$촉매에서 CO에 대한 친화성은 $Co_3O_4$에 비해 크게 감소하였다. 환원과정에서는 금의 첨가효과가 보이지 않고, 재산화과정에서 금의 첨가효과가 뚜렷하게 나타나, 첨가된 금은 환원상태의 코발트의 재산화를 촉진시켰다.

  • PDF

SRSL 매립지 최종 복토층의 투수 및 강도 특성 (Hydraulic Conductivity and Strength Characteristics of Self Recovering Sustainable Liner (SRSL) as a Landfill Final Cover)

  • 권오정;이주형;조완제;정영훈
    • 한국지반공학회논문집
    • /
    • 제27권12호
    • /
    • pp.5-15
    • /
    • 2011
  • 본 연구는 매립지의 최종복토층으로 사용되는 점토 혹은 지오멤브레인의 부등침하 및 기상조건변화에 의한 균열에 취약한 점을 고려하여 균열 발생시 자가형성된 물질로 인하여 균열치유 작용을 할 수 있는 SRSL(Self Recovering Sustainable Liner)의 매립지 최종복토층으로서의 적용성을 파악하였다. SRSL 기법은 2개의 층을 두어 상, 하부층 사이 계면에 불투수성 물질을 생성하는 동시에, 균열발생 시에도 2가지 성분이 다시 결합하여 불투수성 물질을 재형성하는 역할을 수행한다. SRSL의 최종복토층의로서의 적용성 파악을 위해서 실험실에서 연성벽체 투수시험기를 사용하여 투수 특성을 파악하였고 일축압축시험을 통하여 강도 및 강성 특성을 파악하였다. 또한 최종 복토층의 경우 환경적인 요인에 직접적으로 노출되어 있기 때문에 동결/융해 및 건조/습윤에 따른 SRSL의 투수 및 강도 특성 또한 알아보았다. 시험 결과, SRSL은 낮은 투수계수와 기준보다 높은 강도를 가진 매립장의 복토층 재료로 적합한 물질로 판단되며, 동결/융해 및 건조/습윤의 환경적인 영향에 대해서도 안정한 것으로 판명되었다.

MOCVD에 의한 GaAs/AlGaAs 초격자 및 HEMT 구조의 성장 (Growth of GaAs/AlGaAs Superlattice and HEMT Structures by MOCVD)

  • 김무성;김용;엄경숙;김성일;민석기
    • 대한전자공학회논문지
    • /
    • 제27권2호
    • /
    • pp.81-92
    • /
    • 1990
  • MOCVD에 의하여 초격자 및 HEMT 구조를 성장하고 그 특성을 보고한다. GaAs/AlGaAs의 경우, 주기성(periodicity),계면 급준성, Al 조성 균일성을 경사연마 및 double crystal x-ray 측정에 의하여 확인하였고, 고립 양자우물의 양자효과(quantum size effect)에 의한 PL(photoluminescence) 스펙트럼을 관측하였다. 이 PL FWHM (full width at half maximum)과 우물 두께의 관계로 부터 계면 급준성이 1 monolayer fluctuation 정도인 초격자 구조가 성장되었음을 확인하였다. 한편, HEMT 구조의 경우에 헤테로 계면에 형성된 2차원 전자층의 존재를 C-V profile, SdH(shu-bnikov-de Haas)진동, 저온 Hall 측정을 통하여 확인하였다. 저온 Hall 측정에서 15K에서 sheet carrier density $5.5{\times}10^{11}cm^-2$,mobility $69,000cm^2/v.sec$, 77K에서 sheet carrier density $6.6{\times}10^{11}cm^-2$, mobility $41,200cm^2/v.sec$ 이었다. 또한 quantum Hall effect 측정으로 부터 잘 형성된 SdH 진동 및 quantized Hall plateau를 관측하였다.

  • PDF

Sn-3.5Ag-0.7Cu Micro-BCA의 Soldering성 연구 (A Study on The Solderability of Micro-BGA of Sn-3.5Ag-0.7Cu)

  • 신규식;김문일;정재필;신영의
    • 마이크로전자및패키징학회지
    • /
    • 제7권3호
    • /
    • pp.55-61
    • /
    • 2000
  • 직경 0.3 mm의 Sn-37Pb 및 Sn-3.5Ag-0.7Cu 솔더볼을 솔더링 온도와 기판의 이송속도 (conveyer speed)를 변화시켜 가며 리플로 솔더링 하였다. 리플로 솔더링 온도범위는 Sn-37Pb의 경우 220~$240^{\circ}C$, Sn-3.5Ag-0.7Cu의 경우는 230~ $260^{\circ}C$로 하였다. 실험결과, 전단강도 측면에서 최적 솔더링 조건을 Sn-37Pb의 경우 솔더링 온도 및 컨베이어 속도가 각각 $230^{\circ}C$, 0.7~0.8 m/min이고, Sn-3.5Ag-0.7Cu의 경우 각각 $250^{\circ}C$, 0.6 m/min으로 나타났다. 또한 최고 전단강도 값은 Sn-37Pb의 경우는 555 gf 이고 Sn-3.5Ag-0.7Cu의 경우는 617gf이다. 접합계면의 분석결과 Cu6Sn5층의 두께는 Sn-37Pb의 경우는 1.13~1.45 $\mu\textrm{m}$이고 Sn-3.5Ag-0.7Cu의 경우는 2.5~4.3 $\mu\textrm{m}$이다.

  • PDF