• Title/Summary/Keyword: interface roughness

Search Result 324, Processing Time 0.025 seconds

Steady Simulations of Impeller-Diffuser Flow Fields in Turbocompressor Applications (터보 압축기 임펠러-디퓨저 운동장에 대한 정상상태 해석)

  • Nam, S.S.;Park, I.Y.;Lee, S.R.;Ju, B.S.;Hwang, Y.S.;In, B.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.405-412
    • /
    • 2005
  • Numerical and experimental investigations were conducted to assess the aerodynamic performance of several centrifugal compressors. In order to impose an appropriate physics at the interface between impeller and vaned diffuser numerically, two different techniques, frozen rotor and stage models, were applied and the simulation results were compared with the corresponding prototype test data. An equivalent sand-grain roughness height was utilized in the present computational study to consider a relative surface roughness effect on the stage performance simulated. From a series of investigations, it was found that the stage model is more suitable than the frozen rotor scheme for the steady interactions between impeller and diffuser in turbocompressor applications. It is supposed that the solution by frozen rotor scheme is inclined to overrate the non-uniformity of the flow fields. The predicted aerodynamic performance accounting for surface roughness effect shows favorable agreement with experimental data. Simulations based on the aerodynamically smooth surface assumption tend to overestimate the stage performance.

  • PDF

Interface Shear Strength in Half Precast Concrete Slab (반두께 P.C. 슬래브의 면내전단내력에 관한 연구)

  • 이광수;김대근;최종수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.161-168
    • /
    • 1994
  • Half-P.C. slab system is the composite structural system which utilizes precast concrete for lower portion and cast in situ concrete for upper portion slab. When the composite slab using Half P.C. slab is deformed by flexural moment, horizontal shear happened at the interface between Half P.C. slab and topping concrete. To resist horizontal shear strength a scratch method has tried. To determine ultimate interface shear strength, shear stress, and shear coefficient, high and normal strength concrete are used for topping concrete. Major variables are compressive strength of topping concrete with or without shear reinforcement, quantitative roughness of the P.C. :surface and tie or untie of the stud with welded deformed wire fabric in the P.C. member. The Icross sectional area on joints is 3,200 $cm^2$ in all specimens. Test results showed that shear stress increased, as the depth of the quantitative roughness increased. The horizontal shear strength could be resisted with safe by the quantitative roughness without shear tie. A shear coefficient determinant equation is proposed such that K = 0.025918 + 0.0068894$\cdot$R – 0.000182354${\cdot}R^2$

Dependence of Q Factor on Surface Roughness in a Plasmonic Cavity

  • Kim, Yoon-Ho;Kwon, Soon-Hong;Ee, Ho-Seok;Hwang, Yongsop;No, You-Shin;Park, Hong-Gyu
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.188-191
    • /
    • 2016
  • We investigated surface-roughness-dependent optical loss in a plasmonic cavity consisting of a semiconductor nanodisk/silver nanopan structure. Numerical simulations show that the quality factors of plasmonic resonant modes significantly depend on the surface roughness of the dielectric-metal interface in the cavity structure. In the transverse-magnetic-like whispering-gallery plasmonic mode excited in a structure with disk diameter of 1000 nm, the total quality factor decreased from 260 to 130 with increasing root-mean-square (rms) surface roughness from 0 to 5 nm. This quantitative theoretical study shows that the smooth metal surface plays a critical role in high-performance plasmonic devices.

Effect of Oscillatory Shear on the Interfacial Morphology of a Reactive Bilayer Polymer System

  • Kim, Hwang-Yong;Lee, Dong-Hyun;Kim, Jin-Kon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.350-350
    • /
    • 2006
  • We investigated, via atomic force microscopy and transmission electron microscopy, the effect of shear force on the interfacial morphology of a reactive bilayer polymer system composed of PS-mCOOH and PMMAGMA. It has been observed that in the absence of oscillatory shearing the roughness of the interface increased with reaction period, while at large values of ${\gamma}_{0}\;and\;{\omega}$ it became less than that observed in the absence of oscillatory shearing. This observation may be attributable to the possibility that oscillatory shearing might have hindered the diffusion of polymer chains, which are located away from the interface, to the interface of the layers. However, the effect of ${\gamma}_{0}\;and\;{\omega}$ on the roughness of the interface of (PS-mCOOH)/(PMMA-GMA) bilayer is found to be quite different.

  • PDF

Effects of Corrosion Behavior on Failure of Co-Cured Single Lap Joints Subjected to Cyclic Tensile Loads (피로하중이 가해지는 외면겹치기 동시경화조인트의 파괴에 미치는 부식의 영향)

  • Shin, Kum-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.315-321
    • /
    • 2010
  • Co-cured single lap joints under cyclic tensile loads fail initially at the tip of the interface corner between the two adherents. The failure mechanism is complex because it is related to corrosion fatigue. Corrosion behavior at the interface affects the failure of the joints because corrosion deteriorates fatigue resistance. In this study, we clarified the cause of interfacial corrosion in co-cured single lap joints under cyclic tensile loads. The failure mechanism was also analyzed by observing the failed surfaces of specimens and the stress distribution along the interface. The surface roughness at the interface and the stacking sequence of the composite adherent were examined to investigate their effects on failure of the joint.

An Experimental Study on In-Plane Shear Strength of the Interface between Half PC Plate and Cast-in-Place Concrete Plate (하프 PC판과 후타설콘크리트 접합면의 면내전단강도에 관한 실험적 연구)

  • 신동원;고만영;이동우;김용부
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.513-518
    • /
    • 1998
  • In Half Precast Concrete Method, such as composite slab and composite wall, Interface between half PC plate and cast-in-place concrete is occurred. And this interface endure lastly in-plane shear which is occurred by external force. Therefore, test was executed to study in-plane shear strength of interface between half PC plate and cast-in-place concrete. In this test, Experimental parameters are finishing condition of the interface, cohesion of concrete, existence and nonexistence of re-bar truss, and angle and direction of lattice of re-bar truss. Comparing and analyzing experimental results, conclusions are obtained as follows. (1) In-plane shear strength of wide interface in composite plate is more affected by the roughness of interface than re-bar truss. And cohesion of concrete contribute to increasing in-plane shear strength. Therefore it seems that the interface should be roughen and kept clean to improve in-plane shear strength. (2) It seems that shear friction equation in ACI code can be sagely available for design of in-plane shear of composite plate.

  • PDF

Shear strength behavior of crude oil contaminated sand-concrete interface

  • Mohammadi, Amirhossein;Ebadi, Taghi;Eslami, Abolfazl
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.211-221
    • /
    • 2017
  • A laboratory investigation into crude oil contaminated sand-concrete interface behavior is performed. The interface tests were carried out through a direct shear apparatus. Pure sand and sand-bentonite mixture with different crude oil contents and three concrete surfaces of different textures (smooth, semi-rough, and rough) were examined. The experimental results showed that the concrete surface texture is an effective factor in soil-concrete interface shear strength. The interface shear strength of the rough concrete surface was found higher than smooth and semi-rough concrete surfaces. In addition to the texture, the normal stress and the crude oil content also play important roles in interface shear strength. Moreover, the friction angle decreases with increasing crude oil content due to increase of oil concentration in soil and it increases with increasing interface roughness.

Dielectric Strength of Macro Interface between Epoxy and Rubber According to the Interface Condition (계면조건에 따른 에폭시와 고무 거시계면의 절연내력)

  • Oh, Yong-Cheul;Bae, Duck-Kweon;Kim, Jin-Sa;Kim, Chung-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.581-585
    • /
    • 2006
  • Macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably in the complex insulation system using in extra high voltage (EHV) electric devices. In this paper, Interface between epoxy and ethylene propylene diene terpolymer (EPDM) was selected as an interface in electrical insulation system and the AC dielectric strength of the interface was investigated. Air compress system was used to give pressure to the interface. Specimens were prepared in various ways to generate different surface conditions for each type of interface. Increasing interfacial pressure, decreasing surface roughness and spreading oil over surfaces improve the AC interfacial dielectric strength. Especially, the dielectric strength was saturated at certain interfacial pressure.

Polish of interface areas between zirconia, silicate-ceramic, and composite with diamond-containing systems

  • Pott, Philipp-Cornelius;Hoffmann, Johannes Philipp;Stiesch, Meike;Eisenburger, Michael
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.315-320
    • /
    • 2018
  • PURPOSE. Fractures, occlusal adjustments, or marginal corrections after removing excess composite cements result in rough surfaces of all-ceramic FPDs. These have to be polished to prevent damage of the surrounding tissues. The aim of this study was to evaluate the roughness of zirconia, silicate-ceramic, and composite after polish with different systems for intraoral use. MATERIALS AND METHODS. Each set of 50 plates was made of zirconia, silicate-ceramic, and composite. All plates were ground automatically and were divided into 15 groups according to the treatment. Groups Zgrit, Sgrit, and Cgrit received no further treatment. Groups Zlab and Slab received glaze-baking, and group Clab was polished with a polishing device. In the experimental groups Zv, Sv, Cv, Zk, Sk, Ck, Zb, Sb, and Cb, the specimens were polished with ceramic-polishing systems "v", "k", and "b" for intraoral use. Roughness was measured using profilometry. Statistical analysis was performed with ANOVA and $Scheff{\acute{e}}$-procedure with the level of significance set at P=.05. RESULTS. All systems reduced the roughness of zirconia, but the differences from the controls Zgrit and Zlab were not statistically significant (P>.907). Roughness of silicate ceramic was reduced only in group Sv, but it did not differ significantly from both controls (P>.580). Groups Cv, Ck, and Cb had a significantly rougher surface than that of group Clab (P<.003). CONCLUSION. Ceramic materials can be polished with the tested systems. Polishing of interface areas between ceramic and composite material should be performed with polishing systems for zirconia first, followed by systems for veneering materials and for composite materials.