• Title/Summary/Keyword: interface particle

Search Result 336, Processing Time 0.022 seconds

Thermal and Mechanical Properties of Epoxy Composites Using Silica Powder (실리카 파우더를 이용한 에폭시 복합소재의 열적/기계적 특성)

  • Lee, Hye Ryeon;Song, JeeHye;Kim, Daeyeon;Lim, Choong-Sun;Seo, BongKuk
    • Journal of Adhesion and Interface
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Epoxy composites with concentrations of 5-70 wt% of silica particles were prepared in order to improve mechanical property and poor thermal stability. The mechanical and thermal properties were investigated and compared to the corresponding properties of neat epoxy composite. Furthermore, the effects of silane compound treatment on silica particles were observed by the experimental results of the tensile strength, glass transition temperature, and thermal stability of epoxy composite. Tensile strength of epoxy composites was measured by universal testing machine (UTM) and after that, the structure and morphology analysis of epoxy nanocomposites were analyzed by field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS). The increased solid content of CA0030 particle improved the tensile strength of epoxy/ modified composites to give 30-50 MPa. The thermal expansion coefficients (CTE) of neat epoxy resin and epoxy/silica composites measured with a thermomechanical analyzer (TMA) showed that the incorporation of silica particles was helpful to reduce the CTE of neat epoxy resin.

Emulsion Graft Polymerization of MMA to Sodium Alginate : Mechanism and Solvent Effect (알긴산 소다에의 MMA유화 그래프트 중합 : 메커니즘 및 용매효과)

  • Park, Hwan-Man
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.10-23
    • /
    • 2001
  • In order to increase the lower values of % grafting and monomer conversion in the emulsion graft polymerization of methylmethacrylate(MMA) onto sodium alginate (SA; a polymer electrolyte) with alginic acid-g-PMMA, the graft polymerization with water soluble (methanol and acetone) and insoluble solvents was carried out using a varity of solvent amounts and agitating rates. And some physical properties of the graft polymer were also investigated. In the polymerizations with water insoluble solvent, there were pronounced improvements in both % grafting and MMA conversion by the promotion of MMA diffusion from the core to the SA adsorpted on the outer layer of particle and that of MMA complex formation with SA. And the effect was larger for the solvents (cyclohexane, decalin) which do not dissolve PMMA. On the other hand, in the polymerization with water soluble solvent, there was an significant increase in MMA conversion and a considerable increase in the % grafting by the destruction of electrical double layer around the SA chains, abstracting the hydrated water in the layer and the effect was more potential in the case of methanol which is a precipitant of PMMA.

  • PDF

Fabrication and characterization of the nano- and micro-particles applied dry adhesives (나노 또는 마이크로 입자의 전사를 이용한 건식 접착제의 제조 및 특성 분석)

  • Yu, Min Ji;Vu, Minh Canh;Han, Sukjin;Park, Jae Hong;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • In this study, the micro- and nano-particles were used and their shapes were transferred into the polydimethylsiloxane (PDMS) film to fabricate the dry adhesives and their properties were investigated. The Cu nanoparticles of the sizes of 20 nm, 40 nm and 70 nm and the polymethylmethacrylate (PMMA) beads of the size of $5{\mu}m$ were used to transfer their images and the resultant properties of the dry adhesives were compared. The effects of particle size and materials on the mechanical property, tensile adhesion strength, light transmittance, surface morphology, water contact angle were studied. The dry adhesives obtained from the transfer process of Cu nanoparticles with the size of 20 nm resulted in the enhancement of tensile adhesion strength more than 300% compared to that of the bare PDMS. The formation of nanostructure of large surface area on the surface of the PDMS film by the Cu nanoparticles may responsible for the improvement. This study suggests that the use of nanoparticles during the fabrication of PDMS dry adhesives is easy and effective and could be applied to the fabrication of the medical patch.

GEO-KOMPSAT-2A KSEM Requirements and its System Design (정지궤도복합위성 우주기상탑재체 개발 요구사항 및 시스템 설계)

  • Jin, Kyoung-Wook;Jang, Sung-Soo;Choi, Jung-Su;Yang, Koon-Ho;Seon, Jongho;Chae, Kyu-Sung;Park, Junyong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2014
  • GEO-KOMPSAT-2 (GK2) program, which develops two advanced geostationary satellites simultaneously after the successful COMS mission (2010~present), is on going. An improved next generation meteorological payload and space weather sensors will be equipped on the GK2A. The space weather sensor will be the Korea's first geostationary space environment monitoring payload. Main objectives of the project are its applications into space weather forecasting and pre-warning of hazardous space weather by monitoring physical phenomena such as distribution of high energetic particles, Earth's magnetic fields and charging currents on the spacecraft at a geostationary orbit using the three space weather sensors(energetic particle detector, magnetometer and charging monitor). The summary of the GK2A space weather sensor development and its system and interface designs were described in the paper.

Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.493-504
    • /
    • 2018
  • In this paper, the tensile failure behaviour of transversally bedding layers was numerically simulated by using particle flow code in two dimensions. Firstly, numerical model was calibrated by uniaxial, Brazilian and triaxial experimental results to ensure the conformity of the simulated numerical model's response. Secondly, 21 circular models with diameter of 54 mm were built. Each model contains two transversely bedding layers. The first bedding layer has low mechanical properties, less than mechanical properties of intact material, and second bedding layer has high mechanical properties, more than mechanical properties of intact material. The angle of first bedding layer, with weak mechanical properties, related to loading direction was $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ while the angle of second layer, with high mechanical properties, related to loading direction was $90^{\circ}$, $105^{\circ}$, $120^{\circ}$, $135^{\circ}$, $150^{\circ}$, $160^{\circ}$ and $180^{\circ}$. Is to be note that the angle between bedding layer was $90^{\circ}$ in all bedding configurations. Also, three different pairs of the thickness was chosen in models; i.e., 5 mm/10 mm, 10 mm/10 mm and 20 mm/10 mm. The result shows that In all configurations, shear cracks develop between the weaker bedding layers. Shear cracks angel related to normal load change from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Numbers of shear cracks are constant by increasing the bedding thickness. It's to be note that in some configuration, tensile cracks develop through the intact area of material model. There is not any failure in direction of bedding plane interface with higher strength.

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

Mechanical Properties of Porous Reaction Bonded Silicon Carbide (반응소결 탄화규소 다공체의 기계적 특성)

  • Hwang, Sung-Sic;Park, Sang-Whan;Han, Jae-Ho;Han, Kyung-Sop;Kim, Chan-Mook
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.948-954
    • /
    • 2002
  • Porous reaction bonded SiC with high fracture strength was developed using Si melt infiltration method for use of the support layer in high temperature gas filter that is essential to develop the next generation power system such as integrated gasification combined cycle system. The porosity and pore size of porous RBSC developed in this study were in the range of 32∼36% and 37∼90 ${\mu}m$ respectively and the maximum fracture strength of porous RBSC fabricated was 120 MPa. The fracture strength and thermal shock resistance of porous RBSC fabricated by Si melt infiltration were much improved compared to those of commercially available porous clay bonded SiC due to the formation of the strong SiC/Si interface between SiC particles. The characteristics of pore structure of porous RBSC was varied depending on the amounts of residual Si as Well as the size of SiC particle used in green body.

RGB Camera-based Real-time 21 DoF Hand Pose Tracking (RGB 카메라 기반 실시간 21 DoF 손 추적)

  • Choi, Junyeong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.942-956
    • /
    • 2014
  • This paper proposes a real-time hand pose tracking method using a monocular RGB camera. Hand tracking has high ambiguity since a hand has a number of degrees of freedom. Thus, to reduce the ambiguity the proposed method adopts the step-by-step estimation scheme: a palm pose estimation, a finger yaw motion estimation, and a finger pitch motion estimation, which are performed in consecutive order. Assuming a hand to be a plane, the proposed method utilizes a planar hand model, which facilitates a hand model regeneration. The hand model regeneration modifies the hand model to fit a current user's hand, and improves robustness and accuracy of the tracking results. The proposed method can work in real-time and does not require GPU-based processing. Thus, it can be applied to various platforms including mobile devices such as Google Glass. The effectiveness and performance of the proposed method will be verified through various experiments.

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

A STUDY ON THE FRACTURE OF DENTAL AMALGAM (치과용 아말감의 파절에 관한 연구)

  • Huh, Hyeon-Do;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.9 no.1
    • /
    • pp.101-106
    • /
    • 1983
  • It was the purpose of this study to investigate the fracture mode of dental amalgam by observing the crack propagation, and to relate this to the microstructure of the amalgam. Caulk 20th Century Regular, Caulk Spherical, Dispersalloy, and Tytin amalgam alloys were used for this study. After each amalgam alloy and Hg measured exactly by the balance was triturated by the mechanical amalgamator (Capmaster, S.S. White), the triturated mass was inserted into the cylindrical metal mold which was 4 mm in diameter and 12 mm in height and was pressed by the Instron Universal Testing Machine at the speed of 1mm/min with 120Kg. The specimen removed from the mold was stored in the room temperature for a week. This specimen was polished with the emery papers from #100 to #200 and finally on the polishing cloth with 0.06${\mu}Al_2O_3$ powder suspended in water. The specimen was placed on the Instron testing machine in the method similar to the diametral tensile test and loaded at the crosshead speed of 0.05mm/min. The load was stopped short of fracture. The cracks on the polished surface of specimen was examined with scanning electron microscope (JSM-35) and analyzed by EPMA (Electron probe microanalyzer). The following results were obtained. 1. In low copper lathe-cut amalgam, the crack went through the voids and ${\gamma}_2$ phase, through the ${\gamma}_1$ phase around the ${\gamma}$ particles. 2. In low copper spherical amalgam, it was observed that the crack passed through the ${\gamma}_2$ and ${\gamma}_1$ phase, and through the boundary between the ${\gamma}_1$ and ${\gamma}$ phase. 3. In high copper dispersant (Dispersalloy) amalgam, the crack was found to propagate at the interface between the ${\gamma}_1$ matrix and reaction ring around the dispersant (Ag-Cu) particles, and to pass through the Ag-Sn particles. 4. In high copper single composition (Tytin) amalgam, the crack went through the ${\gamma}_1$ matrix between ${\eta}$ crystals, and through the unreacted alloy particle (core).

  • PDF