• 제목/요약/키워드: interface energy anisotropy

검색결과 17건 처리시간 0.026초

Interface dependent magnetic anisotropy of Fe/BaTiO3(001): an ab initio study

  • 최희채;정용재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.314-314
    • /
    • 2011
  • Using first principles calculations, we investigated the interface structure effects on the magnetic properties of the Fe/BaTiO3 system. On the BaO-terminated surface, a Fe monolayer is formed as two Fe atoms are adsorbed on the top sites of Ba and O in the ($1{\times}1$) surface unit and a Fe ML is formed on the TiO2-terminated surface as two Fe atoms are adsorbed on the two O top sites. The magnetic anisotropy energy of Fe was higher on the TiO2?-erminated surface (1.5 eV) than on the BaO-terminated surface (0.5 eV). The decomposed electron density of the states showed that the stronger hybridization of Fe with the TiO2 layer than with the BaO layer is the most important reason for the higher magnetic anisotropy energy.

  • PDF

Magnetic Anisotropy of Oxygen-deficient Fe/MgO(001) System: An ab Initio Study

  • 최희채;정용재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.61-61
    • /
    • 2011
  • Using ab initio calculations, we study the MgO(001) and Fe/MgO(001) surface phases and the effects of interface structure on the Fe/MgO magnetic anisotropy. The surface phase diagrams of MgO(001) and Fe/MgO(001) show that the most stable surface structures are either defect-free surface or the surfaces with oxygen vacancies in c($2{\times}1$) periodicity for the systems. By the formations of the oxygen vacancy rows on MgO(001) surface, the in-plane magnetic anisotropy energy of Fe overlayer is reduced while the perpendicular magnetic anisotropy energy is increased from 0.1 to 0.5 meV per Fe atom.

  • PDF

Composition Dependence of Perpendicular Magnetic Anisotropy in Ta/CoxFe80-xB20/MgO/Ta (x=0, 10, 60) Multilayers

  • Lam, D.D.;Bonell, F.;Miwa, S.;Shiota, Y.;Yakushiji, K.;Kubota, H.;Nozaki, T.;Fukushima, A.;Yuasa, S.;Suzuki, Y.
    • Journal of Magnetics
    • /
    • 제18권1호
    • /
    • pp.5-8
    • /
    • 2013
  • The perpendicular magnetic anisotropy of sputtered CoFeB thin films covered by MgO was investigated by vibrating sample magnetometry. Three different $Co_xFe_{80-x}B_{20}$ alloys were studied. Under out-of plane magnetic field, the saturation field was found to increase with increasing the Co content. The magnetization and interface anisotropy energy were obtained for all samples. Both showed a marked dependence on the MgO overlayer thickness. In addition, their variations were found to be non-monotonous as a function of the Co concentration.

Effect of Columnar Structures on Exchange Anisotropy Field in Magnetoresistive NiO/NiFe Bilayers

  • Jai-Young Kim;Gyeong-Su Park;Jae-Chul Ro;Su-Jeong Suh
    • Journal of Magnetics
    • /
    • 제4권3호
    • /
    • pp.88-91
    • /
    • 1999
  • A series of NiO/NiFe bilayer films are deposited with the variation of Ar sputtering pressure for the NiO layers only. As the pressure for the NiO layers increases, the exchange anisotropy field (HEX) decreases gradually and becomes extinct at 2.5 mTorr, at which the maximum coercive force (HC) in the NiO/NiFe films is obtained. Randomly oriented columnar structures with HEX a few tens of Oe and oriented columnar structures with zero HEX are observed in the NiP layers by highvoltage hihg-resolution transmission electron microscopy. The vanishing of the HEX in the oriented structures is attributed to the lack of exchange anisotropy energy (EEX) between NiO and NiFe layers, which results in little contribution of interfacial unidirectional pinning anisotropy to the interface of NiO/NiFe bilayer.

  • PDF

THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY

  • Kim, Jun-Seok
    • 대한수학회논문집
    • /
    • 제22권3호
    • /
    • pp.453-464
    • /
    • 2007
  • A computationally efficient numerical scheme is presented for the phase-field model of two-phase systems for anisotropic interfacial energy. The scheme is solved by using a nonlinear multigrid method. When the coefficient for the anisotropic interfacial energy is sufficiently high, the interface of the system shows corners or missing crystallographic orientations. Numerical simulations with high and low anisotropic coefficients show excellent agreement with exact equilibrium shapes. We also present spinodal decomposition, which shows the robustness of the pro-posed scheme.

Contribution of the Interface Energies to the Growth Process of Cemented Carbides WC-Co

  • Lay, Sabine;Missiaen, Jean-Michel;Allibert, Colette H
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.332-333
    • /
    • 2006
  • The driving forces and the probable processes of WC-Co grain growth are reanalysed from recent data of interface energy and microstructure. Grain growth is driven by the disappearing of the high energy WC/WC and WC/Co interfaces with habit planes different from {0001}, ${10\bar{1}0}$ and ${11\bar{2}0}$ facets and by the area decrease of the WC/WC and WC/Co interfaces with {0001} and ${10\bar{1}0}$ habit planes. Grain growth mainly results of dissolution-precipitation. Abnormal grains are likely formed by defects assisted nucleation.

  • PDF

Periodicity Dependence of Magnetic Anisotropy and Magnetization of FeCo Heterostructure

  • Kim, Miyoung
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2016
  • The magnetic anisotropy energy (MAE) and the saturation magnetization $B_s$ of (110) $Fe_nCo_n$ heterostructures with n = 1, 2, and 3 are investigated in first-principles within the density functional theory by using the precise full-potential linearized augmented plane wave (FLAPW) method. We compare the results employing two different exchange correlation potentials, that is, the local density approximation (LDA) and the generalized gradient approximation (GGA), and include the spin-orbit coupling interaction of the valence states in the second variational way. The MAE is found to be enhanced significantly compared to those of bulk Fe and Co and the magnetic easy axis is in-plane in agreement with experiment. Also the MAE exhibits the in-plane angle dependence with a two-fold anisotropy showing that the $[1{\overline{I}}0]$ direction is the most favored spin direction. We found that as the periodicity increases, (i) the saturation magnetization $B_s$ decreases due to the reduced magnetic moment of Fe far from the interface, (ii) the strength of in-plane preference of spin direction increases yielding enhancement of MAE, and (iii) the volume anisotropy coefficient decreases because the volume increase outdo the MAE enhancement.

고주파 마그네트론 스퍼터링에 의해 형성된 Co/Pd 인공초격자의 수직자기이방성에 관한 연구 (A Study on the Perpendicular Magnetic Anisotropy in Co/Pd artificial Superlattices Prepared by RF Magnetron Sputtering)

  • 박주욱;주승기
    • 한국자기학회지
    • /
    • 제2권3호
    • /
    • pp.251-256
    • /
    • 1992
  • 고주파 마그네트론 스퍼터링에 의해 Co /Pd 인공초격자를 형성하였다. 형성시킨 Co /Pd 인공초격자의 조성변조를 소각 X-선회절 분석으로 확인하였으며, XRD 분석 결과 두 원소의 격자상수 차이로 인해 Co 격자 팽창이 일어남을 알 수 있었다. Co 층 두께가 8${\AA}$ 이하가 되면 Co /Pd 인공초격자는 수직자기이방성을 띠었으며, 특히 Co가 단원자층인 경우에는 보자력이 2350 Oe이었고, 자기이력곡선의 각형도 우수하였다. Co /Pd 인공초격자가 수직자기이방성을 가지는 원인은 Pd에 의해 Co 격자가 팽창되는 현상과 관계가 있으며, Pd 두께가 증가할수록 수직자기이방성이 커지는 것을 확인하였다. Co /Pd 인공초격자의 수직자기이방성 에너지와 Co 두께의 관계로부터 계면이방성 에너지와 부피이방성 에너지를 계산하였으며 이는 각각 0.29 ergs/$cm^2$와 -$6.9{\times}10^6$ ergs/$cm^3$이었다.

  • PDF

Fe3O4/CoFe2O4 superlattices; MBE growth and magnetic properties

  • Quang, Van Nguyen;Shin, Yooleemi;Duong, Anh Tuan;Nguyen, Thi Minh Hai;Cho, Sunglae;Meny, Christian
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2016
  • Magnetite, Fe3O4, is a ferrimagnet with a cubic inverse spinel structure and exhibits a metal-insulator, Verwey, transition at about 120 K.[1] It is predicted to possess as half-metallic nature, 100% spin polarization, and high Curie temperature (850 K). Cobalt ferrite is one of the most important members of the ferrite family, which is characterized by its high coercivity, moderate magnetization and very high magnetocrystalline anisotropy. It has been reported that the CoFe2O4/Fe3O4 bilayers represent an unusual exchange-coupled system whose properties are due to the nature of the oxide-oxide super-exchange interactions at the interface [2]. In order to evaluate the effect of interface interactions on magnetic and transport properties of ferrite and cobalt ferrite, the CoFe2O4/Fe3O4 superlattices on MgO (100) substrate have been fabricated by molecular beam epitaxy (MBE) with the wave lengths of 50, and $200{\AA}$, called $25{\AA}/25{\AA}$ and $100{\AA}/100{\AA}$, respectively. Streaky RHEED patterns in sample $25{\AA}/25{\AA}$ indicate a very smooth surface and interface between layers. HR-TEM image show the good crystalline of sample $25{\AA}/25{\AA}$. Interestingly, magnetization curves showed a strong antiferromagnetic order, which was formed at the interfaces.

  • PDF

강자성 공명법을 이용한 CoFe/MnIr 박막의 교환 결합 에너지 분석 (Analysis of Exchange Coupling Energy by Ferromagnetic Resonance Method in CoFe/MnIr Bilayers)

  • 김동영
    • 한국자기학회지
    • /
    • 제22권6호
    • /
    • pp.204-209
    • /
    • 2012
  • 본 연구에서는 CoFe/MnIr 이중층 구조의 계면에 존재하는 비상보성 반강자성(AF) 스핀들에 의한 교환 결합 에너지 특성을 강자성 공명(FMR) 측정법을 이용하여 분석하였다. MnIr의 두께가 $t_{AF}$= 0, 3 및 10 nm 재료를 열처리한 한 후 이들 재료의 FMR 신호를 측정하였으며, $t_{AF}$= 0 nm 재료를 기준으로 하여 $t_{AF}$= 3 및 10 nm 재료의 교환 바이어스 자기장($H_{ex}$)과 회전 이방성 자기장($H_{ra}$)을 도출하였다. $300^{\circ}C$에서 열처리한 재료의 경우, $H_{ex}$$H_{ra}$의 합은 MnIr의 임계 두께에 무관하게 동일한 값을 보이는데, 이는 비상보성 AF 스핀들이 모두 한 방향으로 정열 되었음을 의미한다. 이들 결과로부터 비상보성 AF 스핀들 중에서 일부분은 CoFe/MnIr의 계면에 고정되어 $H_{ex}$로 발현되어 나타나고, 나머지 부분은 자기장의 방향에 따라서 회전하므로 $H_{ra}$로 발현되고 있음을 알 수 있었다. 따라서 교환 결합 에너지는 교환 바이어스 에너지 및 회전 이방성 에너지의 합으로 표현될 수 있음을 보였다.