• 제목/요약/키워드: interface efficiency

검색결과 1,105건 처리시간 0.03초

Li:Al cathode layer and its influence on interfacial energy level and efficiency in polymer-based photovoltaics

  • 박순미;전지혜;박오옥;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.72-72
    • /
    • 2010
  • Recent development of organic solar cell approaches the level of 8% power conversion efficiency by the introduction of new materials, improved material engineering, and more sophisticated device structures. As for interface engineering, various interlayer materials such as LiF, CaO, NaF, and KF have been utilized between Al electrode and active layer. Those materials lower the work function of cathode and interface barrier, protect the active layer, enhance charge collection efficiency, and induce active layer doping. However, the addition of another step of thin layer deposition could be a little complicated. Thus, on a typical solar cell structure of Al/P3HT:PCBM/PEDOT:PSS/ITO glass, we used Li:Al alloy electrode instead of Al to render a simple process. J-V measurement under dark and light illumination on the polymer solar cell using Li:Al cathode shows the improvement in electric properties such as decrease in leakage current and series resistance, and increase in circuit current density. This effective charge collection and electron transport correspond to lowered energy barrier for electron transport at the interface, which is measured by ultraviolet photoelectron spectroscopy. Indeed, through the measurement of secondary ion mass spectroscopy, the Li atoms turn out to be located mainly at the interface between polymer and Al metal. In addition, the chemical reaction between polymer and metal electrodes are measured by X-ray photoelectron spectroscopy.

  • PDF

유기태양전지 계면 기술 동향 (Overview of Interface Engineering for Organic Solar Cells)

  • 김기환
    • 접착 및 계면
    • /
    • 제22권4호
    • /
    • pp.113-117
    • /
    • 2021
  • 차세대 태양전지 중 유기물을 활용하는 유기 태양전지는 미래 핵심 에너지 생산 장치로, 최근 급격한 성장세와 함께 많은 주목을 보이고 있다. 유기 태양전지 효율 향상을 위해서 계면 공학 기술이 많이 응용되고 있다. 특히 양전극인 양극과 음극에 계면 공학을 활용하여 에너지 준위 조절을 통한 소자 효율 향상과, 궁극적으로 적층형 유기 태양전지에 계면 공학을 활용하여 우수한 전기적, 광학적 성능을 이끌어 내어 고성능 소자를 제작하는 방식이 널리 활용되고 있다. 본 총설에서는 유기태양전지에 활용되고 있는 계면 공학에 대하여 최근 연구 동향을 요약 및 소개하고 고성능 유기 태양전지 제작 방식에 대하여 논의하고자 한다.

웹기반 유연 생산시스템 사용자 인터페이스 (A Study on the User Interface of Web-based Flexible Manufacturing System)

  • 박제웅;김원중
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.68-72
    • /
    • 2004
  • A practical method to investigate the user interface of web based Flexible Manufacturing System(FMS) on the internet environment is established. Because the industrial FMS controller requires a lot of gadget, such as switch, dial, button, etc., for actual work-site flexible operation sufficiently, the user interface of the controller is significantly complex. The support for operational convenience of FMS controller can increase productivity and efficiency of the user, operational personnel of FMS. While most FMS provide their application programming interface(API) and graphical user interface(GUI) with adequate mechanism itself when used in stand alone, there is increasing demand for FMS that can operate with the intuitional user interface find virtual reality(V/R) environment. This thesis considers the intuitional user interface of Web-based FMS first, and from this, goes a step further, improves as virtual reality environment of FMS on the internet environments by using the feature based modeling technique approach and cartoon rendering. The feature-based modeling technique approach is applied to FMS line which is consist of facilities such as machining center, CNC lathe, autonomous guided vehicle, rail guided vehicle, and various controllers. In this study, the FMS established the intuitional user interface is able to obtain not only the operational convenience but also the enough productivity and significant efficiency.

  • PDF

BIM기반의 브레이스 접합부의 구조설계 인터페이스 모듈 개발 (Interface Module Developement of Structural Design for Brace Connections on based BIM)

  • 김태형;신태송
    • 한국강구조학회 논문집
    • /
    • 제25권2호
    • /
    • pp.197-207
    • /
    • 2013
  • 본 연구는 강구조물의 실시설계 단계에서 브레이스 접합부의 구조설계 및 BIM 모델링의 효율성을 제고하기 위한 것으로 브레이스 접합부의 구조설계 인터페이스 모듈 개발을 목적으로 한다. 이를 위하여 국내 외의 구조설계기준을 분석하여 알고리즘을 작성하고 이를 바탕으로 구조설계모듈을 구축하였다. 또한 BIM 설계 도구와 연동하여 모델 데이터로부터 구조설계를 수행하기 위한 입 출력 데이터를 자동으로 생성하며, 구조설계 결과로부터 BIM 모델을 자동으로 생성할 수 있는 인터페이스 모듈을 개발하였다. 예제 모델을 통해 개발된 모듈의 효율성과 실용성을 검증하였다.

High-Efficiency a-Si:H Solar Cell Using In-Situ Plasma Treatment

  • Han, Seung Hee;Moon, Sun-Woo;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok;Lee, Seungmin;Kim, Jungsu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.230-230
    • /
    • 2013
  • In amorphous or microcrystalline thin-film silicon solar cells, p-i-n structure is used instead of p/n junction structure as in wafer-based Si solar cells. Hence, these p-i-n structured solar cells inevitably consist of many interfaces and the cell efficiency critically depends on the effective control of these interfaces. In this study, in-situ plasma treatment process of the interfaces was developed to improve the efficiency of a-Si:H solar cell. The p-i-n cell was deposited using a single-chamber VHF-PECVD system, which was driven by a pulsed-RF generator at 80 MHz. In order to solve the cross-contamination problem of p-i layer, high RF power was applied without supplying SiH4 gas after p-layer deposition, which effectively cleaned B contamination inside chamber wall from p-layer deposition. In addition to the p-i interface control, various interface control techniques such as thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, multiple applications of thin i-layer deposition and H2 plasma treatment, H2 plasma treatment of i-layer prior to n-layer deposition, etc. were developed. In order to reduce the reflection at the air-glass interface, anti-reflective SiO2 coating was also adopted. The initial solar cell efficiency over 11% could be achieved for test cell area of 0.2 $cm^2$.

  • PDF

알루미늄 복합재료의 마찰용접시 브레이크 타이밍이 접합계면 효율에 미치는 영향 (Effect of Brake Timing on Joint Interface Efficiency of Aluminum Composites During Friction Welding)

  • 김현수;박인덕;소전강;김태규
    • 한국분말재료학회지
    • /
    • 제13권1호
    • /
    • pp.62-67
    • /
    • 2006
  • Friction welding of $Al_2O_3$ particulate reinforced aluminum composites was performed and the following conclusions were drawn from the study of interfacial bonding characteristics and the relationship between experimental parameters of friction welding and interfacial bond strength. Highest bonded joint efficiency (HBJE) approaching $100\%$ was obtained from the post-brake timing, indicating that the bonding strength of the joint is close to that of the base material. For the pre-brake timing, HBJE was $65\%$. Most region of the bonded interface obtained from post-brake timing exhibited similar microstructure with the matrix or with very thin, fine-grained $Al_2O_3$ layer. This was attributed to the fact that the fine-grained $Al_2O_3$ layer forming at the bonding interface was drawn out circumferentially in this process. Joint efficiency of post-brake timing was always higher than that of pre-brake timing regardless of rotation speed employed. In order to guarantee the performance of friction welded joint similar to the efficiency of matrix, it is necessary to push out the fine-grained $Al_2O_3$ layer forming at the bonding interface circumferentially. As a result, microstructure of the bonded joint similar to that of the matrix with very thin, fine-grained $Al_2O_3$ layer can be obtained.

거시 인터페이스: UI(User Interface) 조직 구축에 관한 연구 (Macro Interface: Organizational Design for UI Team)

  • 반영환
    • 대한인간공학회지
    • /
    • 제25권3호
    • /
    • pp.43-47
    • /
    • 2006
  • Macro interface is primarily focused at the organization, while micro interface is primarily focused at the products or services. UI(User Interface) or UX(User Experience) organizations in Korea are institutionalized from 2000 years. Since most of the UI organizations are not institutionalized with the strategic plan, structures of them aren't optimized efficiency. The structure of the organization is conceptualized as having three core dimensions: complexity, formalization, and centralization. The status of the UI organizations in Korea is reviewed with these dimensions. This study issued the key success factors for institutionalization for UI team. Organizational maturity is considered in 5 levels based on a model by CMMI. The UI strategy has to be based the maturity level of the organization.

EFFICIENT PARAMETERS OF DECOUPLED DUAL SINGULAR FUNCTION METHOD

  • Kim, Seok-Chan;Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권4호
    • /
    • pp.281-292
    • /
    • 2009
  • The solution of the interface problem or Poisson problem with concave corner has singular perturbation at the interface corners or singular corners. The decoupled dual singular function method (DDSFM) which exploits the singular representations of the solutions was suggested in [3, 9] and estimated optimal accuracy in [10]. The convergence rates consist with theoretical results even for the problems with very strong singularity, with the efficiency depending on parameters used in the methods. Furthermore the errors in $L^2$ and $L^\infty$-spaces display some oscillation, in the cases with meshsize not small enough. In this paper, we present an answer to remove the oscillation via numerical experiments. We observe the effects of parameters in DDSFM, and show the consisting efficiency of the method over the strong singularity.

  • PDF

An investigation into the effects of lime-stabilization on soil-geosynthetic interface behavior

  • Khadije Mahmoodi;Nazanin Mahbubi Motlagh;Ahmad-Reza Mahboubi Ardakani
    • Geomechanics and Engineering
    • /
    • 제38권3호
    • /
    • pp.231-247
    • /
    • 2024
  • The use of lime stabilization and geosynthetic reinforcement is a common approach to improve the performance of fine-grained soils in geotechnical applications. However, the impact of this combination on the soil-geosynthetic interaction remains unclear. This study addresses this gap by evaluating the interface efficiency and soil-geosynthetic interaction parameters of lime-stabilized clay (2%, 4%, 6%, and 8% lime content) reinforced with geotextile or geogrid using direct shear tests at various curing times (1, 7, 14, and 28 days). Additionally, machine learning algorithms (Support Vector Machine and Artificial Neural Network) were employed to predict soil shear strength. Findings revealed that lime stabilization significantly increased soil shear strength and interaction parameters, particularly at the optimal lime content (4%). Notably, stabilization improved the performance of soil-geogrid interfaces but had an adverse effect on soil-geotextile interfaces. Furthermore, machine learning algorithms effectively predicted soil shear strength, with sensitivity analysis highlighting lime percentage and geosynthetic type as the most significant influencing factors.

Study on cognitive load of OM interface and eye movement experiment for nuclear power system

  • Zhang, Jingling;Su, Daizhong;Zhuang, Yan;QIU, Furong
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.78-86
    • /
    • 2020
  • The operation and monitoring (OM) interface is the digital medium between nuclear power system and operators. The cognitive load of OM interface has an important effect on the operation errors made by operator during OM task between operator and computer. The cognitive load model of OM interface is constructed for analysing the composition and influencing factors of OM interface cognitive load. And to study the coping strategies and methods for cognitive load of nuclear power system. An experiment method based on eye movement is proposed to measure the cognitive load of OM interface. Experiment case is carried out with 20 subjects and typical OM interface of a nuclear power system simulator. The OM interface is optimized based on the experiment results. And the results comparison between the original OM interface and the optimized OM interface shows that the cognitive load model and proposed method is valuable contributions in reducing the cognitive load and improving the interaction efficiency of OM tasks.