• Title/Summary/Keyword: interaction condition

Search Result 1,429, Processing Time 0.026 seconds

An Interaction Effect of Eddy Current Signals Due to the Neighboring Signal Sources (근접한 두 신호원에 의한 와전류 신호의 간섭 효과)

  • Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 1991
  • The multi-frequency eddy current technique has been used for evaluation of various type of defects in tubings. However, this technique is not sufficient to detect and evaluate the defect in tubings if the defect is located in the geometrically complicated area(e. g. tube support plate, anti-vibration bar, tubesheet area) and mixing residue signal is significant to the defect signal. In order to improve the reliability of the multi-frequency eddy current technique, the effect of the interaction of mixing residue after frequency mixing with a function of distances between the defect and the tube support plate boundary has been analyzed theoretically. The experimental results have been discussed with the theoretical developments. The calculation shows the interaction between the two neighboring signal sources could be significant within the range of approximately 1.0mm with the experimental condition.

  • PDF

Effects of Gas-surface Interaction Models on Spacecraft Aerodynamics

  • Khlopkov, Yuri Ivanovich;Chernyshev, Sergey Leonidovich;Myint, Zay Yar Myo;Khlopkov, Anton Yurievich
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • The influence of boundary condition of the bodies with gas flows is one of the most important problems in high-altitude aerodynamics. In this paper presents the results of the calculation of aerodynamic characteristics of aerospace vehicle using Monte-Carlo method based on three different gas-surface interaction models - Maxwell model, Cercignani-Lampis-Lord (CLL) model and Lennard-Jones (LJ) potential. These models are very sensitive for force and moment coefficients of aerospace vehicle in the hypersonic free molecular flow. The models, method and results can be used for new generation aerospace vehicle design.

Ground-Tunnel Interaction Effect Depending on the Ground Stiffness (지반의 강성변화에 따른 지반-터널 동적 상호작용 연구)

  • 김대상
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.339-343
    • /
    • 2001
  • Shield tunnel having circular section located in the soil or soft rock layer is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately during earthquakes. Based on this knowledge, the ground-tunnel interaction effect for this particular vibration mode is investigated. The ground surrounding a tunnel is assumed to be a homogeneous elastic medium. The bonded boundary condition on the ground-tunnel interface is considered. This suggests a firm bond between the ground and the tunnel lining. As Poisson's ratio and stiffness of the ground increases, the strain induced within the tunnel lining increases.

  • PDF

Analysis on Installation Condition According to Dynamic Characteristics for Overhead Catenary System (전차선로 동적특성에 따른 설치상태 분석)

  • Park, Young;Lee, Kiwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1605-1609
    • /
    • 2016
  • The measurement of current collection performance between pantograph and contact wire of overhead catenary system is intended to prove the safety of operation and the quality of the current collection system. The results of interaction performance of current collection system are required for approving with commercial operation on railway lines. The methods of interaction performance of current collection system are defined on interactional standards such as IEC 62486 and EN 50317. In this paper, the interaction performance is evaluated by the percentage of arcing on Honam high-speed line and the results are used for adjustment of the overhead catenary line structure. The experimental results in Honam high-speed line confirm that the duration of an arc lasting longer 25 ms between pantograph and contact wire was depended on the conditions of overhead contact line after installation.

Estimation of elevated tanks natural period considering fluid- structure- soil interaction by using new approaches

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.145-152
    • /
    • 2017
  • The analytical method is used to develop new models for an elevated tank to estimate its natural period. The equivalent mass- spring method is used to configure the developed analytical models. Also direct method is used for numerical verification. The current study shows that developed models can have a good estimation of natural period compared with concluded results of finite elements. Additional results show that, the dependency of impulsive period to soil stiffness condition is higher than convective period. Furthermore results show that considering the fluid- structure- soil interaction has remarkable effects on natural impulsive and convective periods in case of hard to very soft soil.

Soil-Tunnel Interaction and Isolation Effect during Earthquakes (지진시 지반-터널 상호작용 및 면진 효과)

  • 김대상
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.120-127
    • /
    • 2001
  • Long term earthquake observations at different tunnel sites within a variety of alluvial soil deposits have demonstrated that a circular tunnel is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately. Based on this knowledge, the soil-tunnel interaction and isolation effect for this particular vibration mode is investigated. Interaction effect is considered with the condition of fixed tangential strain between the tunnel and the soil. Isolation effect embodied by covering up the tunnel with isolation materials is discussed as a possible measure for mitigating seismic damage to it. When Poisson`s ratio of isolation material decreases or the shear modulus ratios of the soil to isolation material become large, the isolation effect becomes bigger.

  • PDF

Fluid-structure interactions of physiological flow in stenosed artery

  • Buriev, Bahtiyor;Kim, Tae-Dong;Seo, Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2009
  • Atherosclerosis is a disease that narrows, thickens, hardens, and restructures a blood vessel due to substantial plaque deposit. The geometric models of the considered stenotic blood flow are three different types of constriction of cross-sectional area of blood vessel; 25%, 50%, and 75% of constriction. The computational model with the fluid-structure interaction is introduced to investigate the wall shear stresses, blood flow field and recirculation zone in the stenotic vessels. The velocity profile in a compliant stenotic artery with various constrictions is subjected to prescribed physiologic waveform. The computational simulations were performed, in which the physiological flow through a compliant axisymmetric stenotic blood vessel was solved using commercial software ADINA 8.4 developed by finite element method. We demonstrated comparisons of the wall shear stress with or without the fluid-structure interaction and their velocity profiles under the physiological flow condition in the compliant stenotic artery. The present results enhance our understanding of the hemodynamic characteristics in a compliant stenotic artery.

Mechanical and hydraulic interaction between braced wall and groundwater (흙막이 벽체와 그라우트 특성에 따른 구조.수리상호 작용)

  • Nam, Teak-Soo;Yoon, Jau-Ung;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1172-1177
    • /
    • 2010
  • For the deep excavation in urban area, the braced-cut method is mainly adopted. In this case, inadequate consideration of ground water level may result in wrong prediction of structural behavior. In this study, the effects of hydraulic interaction between wall and grout were investigated using the finite element method. The maximum stress in case of confined ground water condition is obtained at the final excavation stage in the range of 70~80% of excavation depth. The stress of impermeable case is about 50% larger than that of permeable case. When the relative permeabililty of wall-grout become smaller, the stress is getting bigger. And the stress tends to converge in case of 1/100 or less of the relative permeability.

  • PDF

FLUID-STRUCTURE INTERACTION ANALYSIS FOR HIGH ANGLE OF ATTACK MANEUVER MISSILE (고받음각에서 기동하는 미사일의 공력-구조 연계 해석)

  • Noh, K.H.;Park, M.Y.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.111-114
    • /
    • 2007
  • Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM) are used to perform aerodynamics analysis and structure analysis. For the fluid-structure interaction analysis, each technology should be considered as well. The process of aerodynamics-structure coupled analysis can be applied to various integrated analyses from many research fields. In this study, the aerodynamics-structure coupled analysis is performed for the missile at high angle of attack condition through the use of Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). For this purpose, the aerodynamics-structure coupled analyses procedure for the missile are established. The results of the integrated analysis are compared with rigid geometry of the missile and the effect of the deformation will be addressed.

  • PDF

New coefficients to find natural period of elevated tanks considering fluid-structure-soil interaction effects

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.949-963
    • /
    • 2017
  • The main purpose of the current study is to develop the new coefficients for consideration of soil-structure interaction effects to find the elevated tank natural period. Most of the recommended relations to find the natural period just assumed the fixed base condition of elevated tank systems and the soil effects on the natural period are neglected. Two different analytical systems considering soil-structure- fluid interaction effects are recommended in the current study. Achieved results of natural impulsive and convective period, concluded from mentioned models are compared with the results of a numerical model. Two different sets of new coefficients for impulsive and convective periods are developed. The values of the developed coefficients directly depend to soil stiffness values. Additional results show that the soil stiffness not only has significant effects on natural period but also it is effective on liquid sloshing wave height. Both frequency content and soil stiffness have significant effects on the values of liquid wave height.