• 제목/요약/키워드: interacting protein 2

검색결과 187건 처리시간 0.027초

Interaction Proteome Analysis of Xanthomonas Hrp Proteins

  • Jang, Mi;Park, Byoung-Chul;Lee, Do-Hee;Bae, Kwang-Hee;Cho, Sa-Yeon;Park, Hyun-Seok;Lee, Baek-Rak;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.359-363
    • /
    • 2007
  • Because of the importance of the type III protein-secretion system in bacteria-plant interaction, its function in bacterial pathogenesis of plants has been intensively studied. To identity bacterial proteins interacting with Xanthomonas hrp gene products that are involved in pathogenicity, we performed the glutathione-bead binding analysis of Xanthomonas lysates containing GST-tagged Hrp proteins. Analysis of glutathione-bead bound proteins by 1-DE and MALDI-TOF has demonstrated that Avr proteins, RecA, and several components of the type III secretion system interact with HrpB protein. This proteomic approach could provide a powerful tool in finding interaction partners of Hrp proteins whose roles in host-pathogen interaction need further studies.

Regulation of DREAM Expression by Group I mGluR

  • Lee, Jin-U;Kim, In-Sook;Oh, So-Ra;Ko, Suk-Jin;Lim, Mi-Kyung;Kim, Dong-Goo;Kim, Chul-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권2호
    • /
    • pp.95-100
    • /
    • 2011
  • DREAM (downstream regulatory element antagonistic modulator) is a calcium-binding protein that regulates dynorphin expression, promotes potassium channel surface expression, and enhances presenilin processing in an expression level-dependent manner. However, no molecular mechanism has yet explained how protein levels of DREAM are regulated. Here we identified group I mGluR (mGluR1/5) as a positive regulator of DREAM protein expression. Overexpression of mGluR1/5 increased the cellular level of DREAM. Up-regulation of DREAM resulted in increased DREAM protein in both the nucleus and cytoplasm, where the protein acts as a transcriptional repressor and a modulator of its interacting proteins, respectively. DHPG (3,5-dihydroxyphenylglycine), a group I mGluR agonist, also up-regulated DREAM expression in cortical neurons. These results suggest that group I mGluR is the first identified receptor that may regulate DREAM activity in neurons.

Identification of Histone Deacetylase 1 Protein Complexes in Liver Cancer Cells

  • Farooq, Muhammad;Hozzein, Wael N.;Elsayed, Elsayed A.;Taha, Nael A.;Wadaan, Mohammad A.M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.915-921
    • /
    • 2013
  • Background: Hepatocellular carcinoma is one of the leading causes of mortalities worldwide. The search for new therapeutic targets is of utmost importance for improved treatment. Altered expression of HDAC1 in hepatocellular carcinoma (HCC) and its requirement for liver formation in zebrafish, suggest that it may regulate key events in liver carcinogenesis and organogenesis. However, molecular mechanisms of HDAC1 action in liver carcinogenesis are largely unknown. The present study was conducted to identify HDAC1 interacting proteins in HepG2 cells using modified SH-double-affinity purification coupled with liquid mass spectrophotemetery. Materials and Methods: HepG2 cells were transfected with a construct containing HDAC1 with a C-terminal strepIII-HA tag as bait. Bait proteins were confirmed to be expressed in HepG2 cells by western blotting and purified by double affinity columns and protein complexes for analysis on a Thermo LTQ Orbitrap XL using a C18 nano flow ESI liquid chromatography system. Results: There were 27 proteins which showed novel interactions with HDAC1 identified only in this study, while 14 were among the established interactors. Various subunits of T complex proteins (TCP1) and prefoldin proteins (PFDN) were identified as interacting partners that showed high affinity with HDAC1 in HepG2 cells. Conclusions: The double affinity purification method adopted in this study was very successful in terms of specificity and reproducibility. The novel HDAC1 complex identified in this study could be better therapeutic target for treatment of hepatocellular carcinoma.

In vitro Evidence that Purified Yeast Rad27 and Dna2 are not Stably Associated with Each Other Suggests that an Additional Protein(s) is Required for a Complex Formation

  • Bae, Sung-Ho;Seo, Yeon-Soo
    • BMB Reports
    • /
    • 제33권2호
    • /
    • pp.155-161
    • /
    • 2000
  • The saccharomyces cerevisiae Rad27, a structure-specific endonuclease for the okazaski fragment maturation has been known to interact genetically and biochemically with Dna2, an essential enzyme for DNA replication. In an attempt to define the significance of the interaction between the two enzymes, we expressed and purified both Dna2 and Rad27 proteins. In this report, Rad27 could not form a complex with Dna2 in the three different analyses. The analyses included glycerol gradient sedimentation, protein-column chromatography, and coinfection of baculoviruses followed by affinity purification. This is in striking contrast to the previous results that used crude extracts. These results suggest that the interaction between the two proteins is not sufficiently stable or indirect, and thus requires an additional protein(s) in order for Rad27 and Dna2 to form a stable physical complex. This result is consistent with our genetic findings that Schizosaccharomyces pombe Dna2 is capable of interacting with several proteins that include two subunits of polymerase $\delta$, DNA ligase I, as well as Fen-1. In addition, we found that the N-terminal modification of Rad27 abolished its enzymatic activity. Thus, as suspected, we found that on the basis of the structure determination, N-terminal methionine indeed plays an important role in the nucleolytic cleavage reaction.

  • PDF

Computational approaches for prediction of protein-protein interaction between Foot-and-mouth disease virus and Sus scrofa based on RNA-Seq

  • Park, Tamina;Kang, Myung-gyun;Nah, Jinju;Ryoo, Soyoon;Wee, Sunghwan;Baek, Seung-hwa;Ku, Bokkyung;Oh, Yeonsu;Cho, Ho-seong;Park, Daeui
    • 한국동물위생학회지
    • /
    • 제42권2호
    • /
    • pp.73-83
    • /
    • 2019
  • Foot-and-Mouth Disease (FMD) is a highly contagious trans-boundary viral disease caused by FMD virus, which causes huge economic losses. FMDV infects cloven hoofed (two-toed) mammals such as cattle, sheep, goats, pigs and various wildlife species. To control the FMDV, it is necessary to understand the life cycle and the pathogenesis of FMDV in host. Especially, the protein-protein interaction between FMDV and host will help to understand the survival cycle of viruses in host cell and establish new therapeutic strategies. However, the computational approach for protein-protein interaction between FMDV and pig hosts have not been applied to studies of the onset mechanism of FMDV. In the present work, we have performed the prediction of the pig's proteins which interact with FMDV based on RNA-Seq data, protein sequence, and structure information. After identifying the virus-host interaction, we looked for meaningful pathways and anticipated changes in the host caused by infection with FMDV. A total of 78 proteins of pig were predicted as interacting with FMDV. The 156 interactions include 94 interactions predicted by sequence-based method and the 62 interactions predicted by structure-based method using domain information. The protein interaction network contained integrin as well as STYK1, VTCN1, IDO1, CDH3, SLA-DQB1, FER, and FGFR2 which were related to the up-regulation of inflammation and the down-regulation of cell adhesion and host defense systems such as macrophage and leukocytes. These results provide clues to the knowledge and mechanism of how FMDV affects the host cell.

Identification and Characterization of a Novel Angiostatin-binding Protein by the Display Cloning Method

  • Kang, Ha-Tan;Bang, Won-Ki;Yu, Yeon-Gyu
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.159-166
    • /
    • 2004
  • Angiostatin is a potent anti-angiogenic protein. To examine the angiostatin-interacting proteins, we used the display-cloning method with a T7 phage library presenting human cDNAs. The specific T7 phage clone that bound to the immobilized angiostatin was isolated, and a novel gene encoding the displayed polypeptide on the isolated T7 phage was identified. The displayed angiostatin-binding sequence was expressed in E. coli as a soluble protein and purified to homogeneity. This novel angiostatin-binding region interacted specifically to angiostatin with a dissociation constant of $3.4{\times}10^{-7}\;M$. A sequence analysis showed that the identified sequence was a part of the large ORF of 1,998 amino acids, whose function has not yet been characterized. A Northern analysis indicated that the gene containing the angiostatin-binding sequence was expressed differentially in the developmental stages or cell types.

Transmembrane Adaptor Proteins Positively Regulating the Activation of Lymphocytes

  • Park, In-Young;Yun, Yung-Dae
    • IMMUNE NETWORK
    • /
    • 제9권2호
    • /
    • pp.53-57
    • /
    • 2009
  • Engagement of the immunoreceptors initiates signaling cascades resulting in lymphocyte activation and differentiation to effector cells, which are essential for the elimination of pathogens from the body. For the transduction of these immunoreceptor-mediated signals, several linker proteins termed transmembrane adaptor proteins (TRAPs) were shown to be required. TRAPs serve as platforms for the assembly and membrane targeting of the specific signaling proteins. Among seven TRAPs identified so far, LAT and LIME were shown to act as a positive regulator in TCR-mediated signaling pathways. In this review, we will discuss the functions of LAT and LIME in modulating T cell development, activation and differentiation.

A Preliminary Analysis of Secreted Proteins from Bifidobacterium pseudocatanulatum BP1 by Two-Dimensional Gel Electrophoresis

  • Moon, Gi-Seong
    • Preventive Nutrition and Food Science
    • /
    • 제13권4호
    • /
    • pp.366-369
    • /
    • 2008
  • Proteins secreted from bifidobacteria are believed to play important roles in human intestines via interacting with different host cells. In this respect, proteins secreted from Bifidobacterium pseudocatanulatum BP1, which has been rarely studied, were analyzed by two-dimensional gel electrophoresis (2DE). Using this approach, approx-imately 21 protein spots on a 2DE gel were detected and 10 of these spots were identified by mass spectrometry. Five spots were identified as hypothetical proteins and the remaining 5 spots were identified as a putative iron-side-rophore binding lipoprotein, a short-chain dehydrogenase/reductase SDR, an exonuclease, cytochrome P450 hydroxylase, and a putative dehydrogenase. The identification of secreted putative iron-siderophore binding lipoprotein was highly interesting since it is an important protein that is involved in ferric iron uptake in pathogenic bacteria. This finding could accelerate studies on the probiotic effect of Bifidobacterium by explaining the competition between bifidobacteria and intestinal pathogens for ferric iron.

Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives

  • Ray, Sujit Kumar;Macoy, Donah Mary;Kim, Woe-Yeon;Lee, Sang Yeol;Kim, Min Gab
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.503-511
    • /
    • 2019
  • As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1-interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.

Cucumber Mosaic Virus 1a Protein Interacts with the Tobacco SHE1 Transcription Factor and Partitions between the Nucleus and the Tonoplast Membrane

  • Yoon, Ju-Yeon;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.182-193
    • /
    • 2021
  • The transcription factor SHE1 was identified as an interacting partner with the cucumber mosaic virus (CMV) 1a protein in the yeast two-hybrid system, by a pull-down assay, and via bimolecular fluorescent complementation. Using fluorescent-tagged proteins and confocal microscopy, the CMV 1a protein itself was found distributed predominantly between the nucleus and the tonoplast membrane, although it was also found in speckles in the cytoplasm. The SHE1 protein was localized in the nucleus, but in the presence of the CMV 1a protein was partitioned between the nucleus and the tonoplast membrane. SHE1 expression was induced by infection of tobacco with four tested viruses: CMV, tobacco mosaic virus, potato virus X and potato virus Y. Transgenic tobacco expressing the CMV 1a protein showed constitutive expression of SHE1, indicating that the CMV 1a protein may be responsible for its induction. However, previously, such plants also were shown to have less resistance to local and systemic movement of tobacco mosaic virus (TMV) expressing the green fluorescent protein, suggesting that the CMV 1a protein may act to prevent the function of the SHE1 protein. SHE1 is a member of the AP2/ERF class of transcription factors and is conserved in sequence in several Nicotiana species, although two clades of SHE1 could be discerned, including both different Nicotiana species and cultivars of tobacco, varying by the presence of particular insertions or deletions.