• 제목/요약/키워드: interacting protein 2

Search Result 187, Processing Time 0.039 seconds

Non-Functionalized Water Soluble Carbon Nanotubes

  • Wenping, Wang;Choe, Jeong-Il;Im, Yeon-Min;Kim, Yu-Na;Kim, Chang-Jun;Gang, Sang-Su;Nam, Tae-Hyeon;Gang, Dong-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.43.2-43.2
    • /
    • 2010
  • Most of previous methods for the dispersions of carbon nanotube were achieved by various chemical functionalizations. In this study, however, we generated highly water dispersed carbon nanofibers by altering intrinsic materials property only, such as crystallinity of outer layers of carbons, without chemical treatment. Although most of chemical functionalization requires acidic treatment and may degrade their chemical functions by interacting with other molecules, suggested strategy demonstrated a simple but chemically non-degradable carbon nanotube for the application of various medical applications, such as drug delivery system and implant coatings.Furthermore, protein adsorption was increased by the reducing surface crystalinity since outer activated surface induced more adsorption of oxygen and eventually greater protein adsorption than pristine carbon nanofibers.

  • PDF

APP Tail 1 (PAT1) Interacts with Kinesin Light Chains (KLCs) through the Tetratricopeptide Repeat (TPR) Domain (APP tail 1 (PAT1)과 kinesin light chains (KLCs)의 tetratricopeptide repeat (TPR) domain을 통한 결합)

  • Jang, Won Hee;Kim, Sang-Jin;Jeong, Young Joo;Jun, Hee Jae;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1608-1613
    • /
    • 2012
  • A conventional kinesin, KIF5/Kinesin-I, transports various cargoes along the microtubule through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) interact with many different cargoes using their tetratricopeptide repeat (TPR) domain, but the mechanism underlying recognition and binding of a specific cargo has not yet been completely elucidated. We used the yeast two-hybrid assay to identify proteins that interact with the TPR domain of KLC1. We found an interaction between the TPR domain of KLC1 and an amyloid precursor protein (APP)-binding protein PAT1 (protein interacting with APP tail 1). The yeast two-hybrid assay demonstrated that the TPR domain-containing region of KLC1 mediated binding to the C-terminal tail region of PAT1. PAT1 also bound to KLC2 but not to kinesin heavy chains (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. These protein-protein interactions were also observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-PAT1 antibody as well as anti-APP anti-body co-immunoprecipitated KLC and KHCs associated with PAT1 from mouse brain extracts. These results suggest that PAT1 could mediate interactions between Kinesin-I and APP containing vesicles.

Identification of new ligands for RNA pseudoknot by structure-based screening of chemical database

  • Park, So-Jung;Jeong, Seung-Hyun;Kim, Yang-Gyun;Park, Hyun-Ju
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.254.2-254.2
    • /
    • 2003
  • For many viruses, -1 ribosomal frameshifting regulate protein synthesis using an RNA pseudoknot. The integrity of pseudoknot stability and structure is the important feature for efficient frameshifting. Thus, small molecules interacting with viral RNA pseudoknots would be potential antiviral agents targeting\ulcorner frameshifting system in viruses. X-ray structure of RNA pseudoknot complexed with biotin has been reported, in which biotin is bound at the interface between the pseudoknot's stacked helices. (omitted)

  • PDF

Annexin A2 gene interacting with viral matrix protein to promote bovine ephemeral fever virus release

  • Chen, Lihui;Li, Xingyu;Wang, Hongmei;Hou, Peili;He, Hongbin
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.33.1-33.15
    • /
    • 2020
  • Bovine ephemeral fever virus (BEFV) causes bovine ephemeral fever, which can produce considerable economic damage to the cattle industry. However, there is limited experimental evidence regarding the underlying mechanisms of BEFV. Annexin A2 (AnxA2) is a calcium and lipid-conjugated protein that binds phospholipids and the cytoskeleton in a Ca2+-dependent manner, and it participates in various cellular functions, including vesicular trafficking, organization of membrane domains, and virus proliferation. The role of the AnxA2 gene during virus infection has not yet been reported. In this study, we observed that AnxA2 gene expression was up-regulated in BHK-21 cells infected with the virus. Additionally, overexpression of the AnxA2 gene promoted the release of mature virus particles, whereas BEFV replication was remarkably inhibited after reducing AnxA2 gene expression by using the small interfering RNA (siRNA). For viral proteins, overexpression of the Matrix (M) gene promotes the release of mature virus particles. Moreover, the AnxA2 protein interaction with the M protein of BEFV was confirmed by GST pull-down and co-immunoprecipitation assays. Experimental results indicate that the C-terminal domain (268-334 aa) of AxnA2 contributes to this interaction. An additional mechanistic study showed that AnxA2 protein interacts with M protein and mediates the localization of the M protein at the plasma membrane. Furthermore, the absence of the AnxA2-V domain could attenuate the effect of AnxA2 on BEFV replication. These findings can contribute to elucidating the regulation of BEFV replication and may have implications for antiviral strategy development.

Plant defense signaling network study by reverse genetics and protein-protein interaction

  • Paek, Kyung-Hee
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.29-29
    • /
    • 2003
  • Incompatible plant-pathogen interactions result in the rapid cell death response known as hypersensitive response (HR) and activation of host defense-related genes. To understand the molecular and cellular mechanism controlling defense response better, several approaches including isolation and characterization of novel genes, promoter analysis of those genes, protein-protein interaction analysis and reverse genetic approach etc. By using the yeast two-hybrid system a clone named Tsipl, Tsil -interacting protein 1, was isolated whose translation product apparently interacted with Tsil, an EREBP/AP2 type DNA binding protein. RNA gel blot analysis showed that the expression of Tsipl was increased by treatment with NaCl, ethylene, salicylic acid, or gibberellic acid. Transient expression analysis using a Tsipl::smGFP fusion gene in Arabidopsis protoplasts indicated that the Tsipl protein was targeted to the outer surface of chloroplasts. The targeted Tsipl::smGFP proteins were diffused to the cytoplasm of protoplasts in the presence of salicylic acid (SA) The PEG-mediated co-transfection analysis showed that Tsipl could interact with Tsil in the nucleus. These results suggest that Tsipl-Tsil interaction might serve to regulate defense-related gene expression. Basically the useful promoters are valuable tools for effective control of gene expression related to various developmental and environmental condition.(중략)

  • PDF

Facile analysis of protein-protein interactions in living cells by enriched visualization of the p-body

  • Choi, Miri;Baek, Jiyeon;Han, Sang-Bae;Cho, Sungchan
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.526-531
    • /
    • 2018
  • Protein-Protein Interactions (PPIs) play essential roles in diverse biological processes and their misregulations are associated with a wide range of diseases. Especially, the growing attention to PPIs as a new class of therapeutic target is increasing the need for an efficient method of cell-based PPI analysis. Thus, we newly developed a robust PPI assay (SeePPI) based on the co-translocation of interacting proteins to the discrete subcellular compartment 'processing body' (p-body) inside living cells, enabling a facile analysis of PPI by the enriched fluorescent signal. The feasibility and strength of SeePPI (${\underline{S}}ignal$ ${\underline{e}}nhancement$ ${\underline{e}}xclusively$ on ${\underline{P}}-body$ for ${\underline{P}}rotein-protein$ ${\underline{I}}nteraction$) assay was firmly demonstrated with FKBP12/FRB interaction induced by rapamycin within seconds in real-time analysis of living cells, indicating its recapitulation of physiological PPI dynamics. In addition, we applied p53/MDM2 interaction and its dissociation by Nutlin-3 to SeePPI assay and further confirmed that SeePPI was quantitative and well reflected the endogenous PPI. Our SeePPI assay will provide another useful tool to achieve an efficient analysis of PPIs and their modulators in cells.

Hypoxia Induced High Expression of Thioredoxin Interacting Protein (TXNIP) in Non-small Cell Lung Cancer and its Prognostic Effect

  • Li, Yan;Miao, Li-Yun;Xiao, Yong-Long;Huang, Mei;Yu, Min;Meng, Kui;Cai, Hou-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2953-2958
    • /
    • 2015
  • Although associations between thioredoxin interacting protein (TXNIP) and cancers have been recognized, the effects of TXNIP on non-small cell lung cancer (NSCLC) prognosis remained to be determined in detail. In addition, while hypoxia is a key characteristic of tumor cell growth microenvironment, the effect of hypoxia on TXNIP expression is controversial. In this study, formaldehyde fixed and paraffin embedded (FFPE) samples of 70 NSCLC patients who underwent resection between January 2010 and December 2011 were obtained. Evaluation of TXNIP and hypoxia inducible factor-$1{\alpha}$ ($HIF-1{\alpha}$) protein expression in FFPE samples was made by immunohistochemistry. By Kaplan-Meier method, patients with high TXNIP expression demonstrated a significantly shorter progression free survival (PFS) compared with those with low TXNIP expression (18.0 months, 95%CI: 11.7, 24.3 versus 23.0 months, 95%CI: 17.6, 28.4, P=0.02). High TXNIP expression level was also identified as an independent prognostic factor by Cox regression analysis (adjusted hazard ratio: 2.46; 95%CI: 1.08, 5.56; P=0.03). Furthermore, TXNIP expression was found to be significantly correlated with $HIF-1{\alpha}$ expression (Spearman correlation=0.67, P=0.000). To further confirm correlations, we established a tumor cell hypoxic culture model. Expression of TXNIP was up-regulated in all three NSCLC cell lines (A549, SPC-A1, and H1299) under hypoxic conditions. This study suggests that hypoxia induces increased TXNIP expression in NSCLC and high TXNIP expression could be a poor prognostic marker.

Ginsenoside Rg3 suppresses mast cell-mediated allergic inflammation via mitogen-activated protein kinase signaling pathway

  • Kee, Ji-Ye;Hong, Seung-Heon
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.282-290
    • /
    • 2019
  • Background: Ginsenoside Rg3 (G-Rg3) is the major bioactive ingredient of Panax ginseng and has many pharmacological effects, including antiadipogenic, antiviral, and anticancer effects. However, the effect of G-Rg3 on mast cell-mediated allergic inflammation has not been investigated. Method: The antiallergic effects of G-Rg3 on allergic inflammation were evaluated using the human and rat mast cell lines HMC-1 and RBL-2H3. Antiallergic effects of G-Rg3 were detected by measuring cyclic adenosine monophosphate (cAMP), detecting calcium influx, and using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and in vivo experiments. Results: G-Rg3 decreased histamine release from activated mast cells by enhancing cAMP levels and calcium influx. Proinflammatory cytokine production was suppressed by G-Rg3 treatment via regulation of the mitogen-activated protein kinases/nuclear factor-kappa B and receptor-interacting protein kinase 2 (RIP2)/caspase-1 signaling pathway in mast cells. Moreover, G-Rg3 protected mice against the IgE-mediated passive cutaneous anaphylaxis reaction and compound 48/80-induced anaphylactic shock. Conclusion: G-Rg3 may serve as an alternative therapeutic agent for improving allergic inflammatory disorders.

LKB1/STK11 Tumor Suppressor Reduces Angiogenesis by Directly Interacting with VEGFR2 in Tumorigenesis

  • Seung Bae Rho;Hyun Jung Byun;Boh-Ram Kim;Chang Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.456-465
    • /
    • 2023
  • Cervical tumors represent a prevalent form of cancer affecting women worldwide; current treatment options involve surgery, radiotherapy, and chemotherapy. Angiogenesis, the process of new blood vessel formation, is a crucial factor in cervical tumor growth. The molecular mechanisms underlying the effects of the liver kinase B1 (LKB1/STK11) tumor suppressor protein on tumor angiogenesis have not been elucidated. Therefore, we investigated the role of LKB1 in cervical tumor angiogenesis both in vitro and in vivo in this study. Our results demonstrated that LKB1 inhibited cervical tumor angiogenesis by suppressing the expression of angiogenesis-related factors such as vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α. LKB1 directly affected both carcinoma and vascular endothelial cells, resulting in a significant reduction in tumor growth and angiogenesis. Furthermore, LKB1 was found to bind to VEGF receptor 2 (VEGFR-2) and target the VEGFR-2-mediated protein kinase B/mechanistic target of rapamycin signaling pathway in endothelial cells, thereby reducing cervical tumor growth and angiogenesis. Our study provides new insights into the molecular mechanisms underlying the anti-tumor and anti-angiogenic effects of LKB1 in cervical cancer. These findings will help develop new therapeutic strategies for cervical cancer.

Crystal Structure of TTC0263, a Thermophilic TPR Protein from Thermus thermophilus HB27

  • Lim, Hyosun;Kim, Kyunggon;Han, Dohyun;Oh, Jongkil;Kim, Youngsoo
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.27-36
    • /
    • 2007
  • The hypothetical protein TTC0263 of Thermus thermophilus HB27 is a thermophilic tetratricopeptide repeat (TPR)-containing protein. In the present study, the TPR region (residues 26-230) was resolved at $2.5{\AA}$ with R-factors of $R/R_{free}$ = 23.6%/28.6% $R/R_{free}=23.6%/28.6%$. TTC0263 consists of 11 helices that form five TPR units. Uniquely, it contains one atypical "extended" TPR (eTPR) unit. This comprises extended helical residues near the loop region of TTC0263, such that the helical length of eTPR is longer than that of the canonical TPR sequence. In addition, the hybrid TPR domain of TTC0263 possesses oligomer-forming characteristics. TPR domains are generally involved in forming multi-subunit complexes by interacting with each other or with other subunit proteins. The dynamic structure of TTC0263 described here goes some way to explaining how TPR domains mediate the formation of multi-subunit complexes.