• 제목/요약/키워드: interacting multiple model method

검색결과 61건 처리시간 0.025초

기동 표적 추적을 위한 DNA 코딩 기반 상호작용 다중모델 기법 (A DNA Coding-Based Interacting Multiple Model Method for Tracking a Maneuvering Target)

  • 이범직;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.87-91
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, a DNA coding-based interacting multiple model (DNA coding-based IMM) method is proposed. The proposed method can overcome the mathematical limits of conventional methods by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive IMM algorithm and the GA-based IMM method in computer simulations.

  • PDF

지능형 입력추정에 기반한 상호작용 다중모델 기법을 이용한 기동표적 추적 (Maneuvering Target Tracking Using the IMM method Based on Intelligent Input Estimation)

  • 이범직;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2085-2087
    • /
    • 2003
  • A new interacting multiple model (IMM) method based on intelligent input estimation (IIE) is proposed for tracking a maneuvering target. In the proposed method, the acceleration level of each sub-filter is determined by IIE using the fuzzy system, which is optimized by the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method in computer simulations.

  • PDF

Tracking a constant speed maneuvering target using IMM method

  • Lee, Jong-hyuk;Kim, Kyung-youn;Ko, Han-seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.484-487
    • /
    • 1995
  • An interacting multiple model (IMM) approach which merges two hypotheses for the situations of constant speed and constant acceleration model is considered for the tracking of maneuvering target. The inflexibility of uncertainty which lies in the kinematic constraint (KC) represented by pseudomeasurement noise variance is compensated by the mixing of estimates from two model Kalman tracker: one with KC and one without KC. The numerically simulated tracking performance is compared for the "great circular like turning" trajectory maneuver by the single model tracker with constant speed KC and two model tracker which is developed in this paper.his paper.

  • PDF

시변가산유색잡음하의 음성 향상을 위한 효율적인 Mixture IMM 알고리즘 (Efficient Mixture IMM Algorithm for Speech Enhancement under Nonstationary Additive Colored Noise)

  • 이기용;임재열
    • 한국음향학회지
    • /
    • 제18권8호
    • /
    • pp.42-47
    • /
    • 1999
  • 본 논문에서는 시변가산유색잡음에 오염된 음성신호의 향상을 위한 MIMM(mixture interacting multiple model) 알고리즘을 제안 한다. 제안된 방법에서 음성신호는 혼합 은닉필터모델(hidden filter model: HFM)로 모델링되며, 잡음신호는 하나의 은닉필터로 모델링 된다. MIMM 알고리즘은 혼합 은닉필터모델에 의한 다중 Kalman 필터링에 기초한 회귀계산이기 때문에 계산량이 많아, Kalman 필터링 식의 구조적 측면에서 효율적인 계산이 가능하도록 알고리즘을 구현했다. 시뮬레이션 결과, 제안된 방법이 기존의 결과 [4,5]에 비하여 성능향상이 이루어 졌음을 보여 준다.

  • PDF

복합모델 다차량 추종 기법을 이용한 차량 주행 제어 (Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm)

  • 문일기;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

M&S를 이용한 사격통제 시스템의 설계검증 및 성능분석에 관한 연구 (The performance analysis and design verification about the fire control system using Modeling and Simulation)

  • 윤동식;김천환;임영택;배윤지
    • 시스템엔지니어링학술지
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2009
  • Gun fire solution computed in ballistic computing unit (BCU) needs to evaluated before applying in real fire. In this paper, ballistic performance analysis method is studied for reasonable prediction or hit probability with ballistics error presentation on hitting plane. Also Gun fire solution using interacting multiple model (IMM) algorithm is analyzed through proposed method.

  • PDF

Weighted IMM 기법을 사용한 각도 추정 오차 감소 기법 (Angle Estimation Error Reduction Method Using Weighted IMM)

  • 최성희;송택렬
    • 한국군사과학기술학회지
    • /
    • 제18권1호
    • /
    • pp.84-92
    • /
    • 2015
  • This paper proposes a new approach to reduce the target estimation error of the measurement angle, especially applied to the medium and long range surveillance radar. If the target has no maneuver and no change in heading direction for a certain time interval, the predicted angle of interacting multiple model(IMM) from the previous track information can be used to reduce the angle estimation error. The proposed method is simulated in 2 scenarios, a scenario with a non-maneuvering target and a scenario with a maneuvering target. The result shows that the new fusion solution(weighted IMM) with the predicted azimuth and the measured azimuth is worked properly in the two scenarios.

기동표적 추적을 위한 유전 알고리즘 기반 상호작용 다중모델 기법 (A GA-Based IMM Method for Tracking a Maneuvering Target)

  • 이범직;주영훈;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.16-21
    • /
    • 2003
  • The accuracy in maneuvering target tracking using multiple models is resulted in by the suitability of each target motion model to be used. The interacting multiple model (IMM) method and the adaptive IMM (AIMM) method require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems, a genetic algorithm(GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to calculate the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulation.

다차량 추종 적응순항제어 (Multi-Vehicle Tracking Adaptive Cruise Control)

  • 문일기;이경수
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

기동 표적 추적을 위한 GA 기반 IMM 방법 (GA-Based IMM Method Using Fuzzy Logic for Tracking a Maneuvering Target)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.166-169
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model, and the GA is applied to identify this fuzzy model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF