KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.7
/
pp.2464-2479
/
2014
Multi-view video coding is an international encoding standard that attains good performance by fully utilizing temporal and inter-view correlations. However, it suffers from high computational complexity. This paper presents a fast encoder design to reduce the level of complexity. First, when the temporal correlation of a group of pictures is sufficiently strong, macroblock-based inter-view prediction is not employed for the non-anchor pictures of B-views. Second, when the disparity between two adjacent views is above some threshold, frame-based inter-view prediction is disabled. Third, inter-view prediction is not performed on boundary macroblocks in the auxiliary views, because the references for these blocks may not exist in neighboring views. Fourth, finer partitions of inter-view prediction are cancelled for macroblocks in static image areas. Finally, when estimating the disparity of a macroblock, the search range is adjusted according to the mode size distribution of the neighboring view. Compared with reference software, these techniques produce an average time reduction of 83.65%, while the bit-rate increase and peak signal-to-noise ratio loss are less than 0.54% and 0.05dB, respectively.
While single view video coding uses the temporal prediction scheme, multi-view video coding (MVC) applies both temporal and inter-view prediction schemes. Thus, the key problem of MVC is how to reduce the inter-view redundancy efficiently, because various existing video coding schemes have already provided solutions to reduce the temporal correlation. In this paper, we propose a global disparity compensation scheme which increases the inter-view correlation and a new inter-view prediction structure based on the global disparity compensation. By experiment, we demonstrate that the proposed global disparity compensation scheme is less sensitive to change of the search range. In addition, the new Inter-view prediction structure achieved about $0.1{\sim}0.3dB$ quality improvement compared to the reference software.
The Journal of Korean Institute of Communications and Information Sciences
/
v.36
no.12C
/
pp.721-726
/
2011
The compression performance of HEVC (high efficiency video coding) is improved 40%, compared to H.264/AVC. Since the existing 3D video CODEC is based on H.264/AVC or MPEG-2, we can improve the compression performance when we use the proposed stereoscopic video coding method based on HEVC. Since the stereoscopic video has the temporal and inter-view correlations, the videos of the left and right cameras encode together to improve the performance. Especially, we implemented the proposed technique using HM(HEVC test model) 3.4. To compare the performance of the proposed method, we only compare the right view video which is coded using the inter-view prediction. The proposed method which is considered inter-view correlation is improved the performance which BDBR reduce about 36.24% and BDPSNR increase approximately 1.19 dB compared to the separated-coding method.
This paper introduces a new texture prediction for MVC( Multi-view Video Coding) which is currently being developed as an extension of the ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 AVC (Advanced Video Coding) [1]. The MVC's prcimary target is 3D video compression for 3D display system, thus, key technology compared to 2D video compression is reducing inter-view correlation. It is noticed, however, that the current JMVM [2] does not effectively eliminate inter-view correlation so that there is still a room to improve coding efficiency. The proposed method utilizes similarity of interview residual signal and can provide an additional coding gain. It is claimed that up to 0.2dB PSNR gain with 1.4% bit-rate saving is obtained for three multi-view test sequences.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.6C
/
pp.579-584
/
2007
Recently various prediction structures have been proposed to exploit inter-view correlation among multi-view video sequences. In this paper, we propose a QP(quantization parameter) selection method for the B frame inserted in the first frames of each GOP(group of pictures), where we change QP for the B frame adaptively to achieve uniform picture quality and overall coding gain. Each B frame is coded with reference to two frames in its adjacent views. We calculate QP for the B frame based on the correlation between the two reference frames, calculated using their rate-distortion costs. By applying the proposed method to the MVC reference prediction structure, we have improved the coding gain by 0.09$\sim$0.16 dB.
The Multi-view Video Coding (MVC) which is exploiting disparities between views has been developed to improve the coding efficiency of multi-view video. But MVC has a problem of having high computing complexities because of disparity estimation. This paper propose a fast mode decision for non-anchor picture to reduce the computational time of MVC. The proposed method uses two phases. Anchor pictures in hierarchical B picture structure have a higher correlation with prediction mode selection of non-anchor pictures, so in the first phase, prediction mode of non-anchor pictures is selected by exploiting the macro-block regions in anchor picture. In the second phase, we select a reference direction of inter prediction mode exploiting a higher correlation among reference directions of inter prediction modes of 7 block sizes. Experimental results show that the proposed method could save average about 44% in the encoding time with negligible coding efficiency losses.
Chen, Fen;Liu, Sheng;Peng, Zongju;Hu, Qingqing;Jiang, Gangyi;Yu, Mei
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.4
/
pp.1730-1747
/
2018
Multi-view video plus depth (MVD) is a mainstream format of 3D scene representation in free viewpoint video systems. The advanced 3D extension of the high efficiency video coding (3D-HEVC) standard introduces new prediction tools to improve the coding performance of depth video. However, the depth video in 3D-HEVC is time consuming. To reduce the complexity of the depth video inter coding, we propose a fast coding unit (CU) size and mode decision algorithm. First, an off-line trained Bayesian model is built which the feature vector contains the depth levels of the corresponding spatial, temporal, and inter-component (texture-depth) neighboring largest CUs (LCUs). Then, the model is used to predict the depth level of the current LCU, and terminate the CU recursive splitting process. Finally, the CU mode search process is early terminated by making use of the mode correlation of spatial, inter-component (texture-depth), and inter-view neighboring CUs. Compared to the 3D-HEVC reference software HTM-10.0, the proposed algorithm reduces the encoding time of depth video and the total encoding time by 65.03% and 41.04% on average, respectively, with negligible quality degradation of the synthesized virtual view.
Because of the different shooting position between multi-view cameras and the imperfect camera calibration, Illumination mismatches of multi-view video can happen. This variation can bring about the performance decrease of multi-view video coding(MVC) algorithm. A histogram matching algorithm can be applied to recompensate these inconsistencies in a prefiltering step. Once all camera frames of a multi-view sequence are adjusted to a predefined reference through the histogram matching, the coding efficiency of MVC is improved. However the histogram distribution can be different not only between neighboring views but also between sequential views on account of movements of camera angle and some objects, especially human. Therefore the histogram matching algorithm which references all frames in chose view is not appropriate for compensating the illumination differences of these sequence. Thus we propose new algorithms both the image classification algorithm which is applied two criteria to improve the correlation between inter-view frames and the histogram matching which references and matches with a group of pictures(GOP) as a unit to advance the correlation between successive frames. Experimental results show that the compression ratio for the proposed algorithm is improved comparing with the conventional algorithms.
Multi-view video coding (MVC) based on H.264/AVC encodes multiple views efficiently by using a prediction scheme that exploits inter-view correlation among multiple views. However, with the increase of the number of views and use of inter-view prediction among views, total encoding time will be increased in multiview video coding. In this paper, we propose a fast mode decision using both MB(Macroblock)-based region segmentation information corresponding to each view in multiple views and global disparity vector among views in order to reduce encoding time. The proposed method achieves on average 40% reduction of total encoding time with the objective video quality degradation of about 0.04 dB peak signal-to-noise ratio (PSNR) by using joint multi-view video model (JMVM) 4.0 that is the reference software of the multiview video coding standard.
Recently, many researches have been focused on multi-view video applications and services such as wireless video surveillance networks, wireless video sensor networks and wireless mobile video. In multi-view video signal processing, to exploit the strong correlation between images acquired by different cameras plays great role in developing a core technique of multi-view video coding. This paper proposes an adaptive multi-view video interpolation technique which is applicable for multi-view distributed video coding without requiring any cooperation amongst the cameras. The proposed algorithm estimates the non-linear moving blocks and employs disparity compensated view prediction, and then fills in the unreliable blocks. Through computer simulations, it is shown that the proposed method outperforms the conventional methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.