• Title/Summary/Keyword: intensity profile

Search Result 366, Processing Time 0.028 seconds

Reduction of Exposure Dose of Mammography by Comparison of Compression Paddle Material (압박대 재질 비교를 통한 유방촬영의 피폭선량 감소 방안)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.455-460
    • /
    • 2019
  • This study compared the radiation transmission and image quality of polymethylmethacrylate (PMMA), polycarbonate (PC), and carbon, which are common components of the compression plates currently used during breast imaging. In addition to measuring the transmitted dose and the intensity without the use of a compression paddle, the four different compression paddles were evaluated according to the material and thickness of each paddle. Radiation transmittance, maximum intensity, and plot profile type w ere all evaluated for each material, and for each factor evaluated the follow ing order w as noted, from best to w orst: carbon 4 mm, PMMA 3 mm, PMMA 4 mm, and PC 4 mm. It is necessary to study a variety of materials and thicknesses in order to find the optimal combination of material and thickness, because not only does the material have a large influence in reducing the radiation exposure during mammography, but the thickness of the compression plate also has a great influence.

Capacity of a transmission tower under downburst wind loading

  • Mara, T.G.;Hong, H.P.;Lee, C.S.;Ho, T.C.E.
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-87
    • /
    • 2016
  • The wind velocity profile over the height of a structure in high intensity wind (HIW) events, such as downbursts, differs from that associated with atmospheric boundary layer (ABL) winds. Current design codes for lattice transmission structures contain only limited advice on the treatment of HIW effects, and structural design is carried out using wind load profiles and response factors derived for ABL winds. The present study assesses the load-deformation curve (capacity curve) of a transmission tower under modeled downburst wind loading, and compares it with that obtained for an ABL wind loading profile. The analysis considers nonlinear inelastic response under simulated downburst wind fields. The capacity curve is represented using the relationship between the base shear and the maximum tip displacement. The results indicate that the capacity curve remains relatively consistent between different downburst scenarios and an ABL loading profile. The use of the capacity curve avoids the difficulty associated with defining a reference wind speed and corresponding wind profile that are adequate and applicable for downburst and ABL winds, thereby allowing a direct comparison of response under synoptic and downburst events. Uncertainty propagation analysis is carried out to evaluate the tower capacity by considering the uncertainty in material properties and geometric variables. The results indicated the coefficient of variation of the tower capacity is small compared to those associated with extreme wind speeds.

Role of Arbitrary Intensity Profile Laser Beam in Trapping of RBC for Phase-imaging

  • Kumar, Ranjeet;Srivastava, Vishal;Mehta, Dalip Singh;Shakher, Chandra
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.78-87
    • /
    • 2016
  • Red blood cells (RBCs) are customarily adhered to a bio-functionalised substrate to make them stationary in interferometric phase-imaging modalities. This can make them susceptible to receive alterations in innate morphology due to their own weight. Optical tweezers (OTs) often driven by Gaussian profile of a laser beam is an alternative modality to overcome contact-induced perturbation but at the same time a steeply focused laser beam might cause photo-damage. In order to address both the photo-damage and substrate adherence induced perturbations, we were motivated to stabilize the RBC in OTs by utilizing a laser beam of ‘arbitrary intensity profile’ generated by a source having cavity imperfections per se. Thus the immobilized RBC was investigated for phase-imaging with sinusoidal interferograms generated by a compact and robust Michelson interferometer which was designed from a cubic beam splitter having one surface coated with reflective material and another adjacent coplanar surface aligned against a mirror. Reflected interferograms from bilayers membrane of a trapped RBC were recorded and analyzed. Our phase-imaging set-up is limited to work in reflection configuration only because of the availability of an upright microscope. Due to RBC’s membrane being poorly reflective for visible wavelengths, quantitative information in the signal is weak and therefore, the quality of experimental results is limited in comparison to results obtained in transmission mode by various holographic techniques reported elsewhere.

A Study on The Flow Characteristics according to Changes of Rod Shape on Impinging Jet (충돌 제트에서 Rod 형상 변화에 따른 주변 유동 특성연구)

  • Son Seung-Woo;Lee Sang-Bum;;Song Min-Geun;Ju Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.525-528
    • /
    • 2002
  • The objective of this study is to investigate characteristics of flow by the Rod shape and the choice of the turbulent intensity enhancement section. The Rod was setup vertically to the way of a nozzle exit flow and nozzle diameter is 17mm. Rod height is 5mm and its shapes are square, triangle, and circle. Characteristics of fluid such as velocity vector distribution, kinetic energy, turbulent intensity, and etc. were visualized, observed, and considered at 3 kinds of Re No. such as 2000, 3000, and 4000. The characteristics of flow field were investigated in each case of the distance rate from the nozzle exit to impinging plate(H/B=8, 10). The temperature of water is $20^{\circ}E$ and the measurement region divided by 3 sections(I, II, III). The nozzle diameter is 17mm. As the experimental result by PIV measurement, scale of the vector profile showed a tendency to an unbalance parabola distribution as increasing of the Re No. When the impinging plates such as square, triangle, and circle shape are installed respectively in front of the flow accelerated, rod shape of the highest velocity vector is circle shape and rod shape of the highest turbulent Intensity is square shape.

  • PDF

Study on Evaluation of Degrease Performance on the Interface between Oil and Alloy (탈지 정도에 대한 방청유-금속 계면의 영향성 평가)

  • Choi, Wonyoung;Kim, Moonsu;Yoo, Hyeonseok;Song, Yeongyun;Jeong, Yong-Gyun;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.371-379
    • /
    • 2021
  • The use of anti-corrosive oil (AC) is inevitable for production of industrial steels to prevent corrosion. The AC is degreased before application of steels, which crucially effects on final products, such as automobile, electricity etc. However, qualitative/quantitative evaluation of degreasing performance are steal insufficient. In this study, degreasing performance of anti-corrosive oil on steel have been studied through X-ray photon spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Commercial automotive steels (AMS) are coated with 4 different anti-corrosive oils (namely AC1-AC4). In XPS, intensity of C1s peak remained after degreasing indirectly indicates incomplete degreasing. Thus, higher C1s peak intensity means less effective degreasing by degreasing agent. peak intensity of C1s peak shows opposite tendency of peak intensity of O1s. We found that EIS analysis is not applicable to mild steel (such as AMS1) due to corrosion during measurement. However, alloy steel can be fully analyzed by EIS and XPS depth profile.

The role background noise intensity on Physiological activity during performance of mental task (인지과제 수행시 배경 소음의 크기에 따른 생리적 반응차)

  • Sohn Jin-Hun;Sokhadze Estate M.;Min Yoon-Ki;Lee Kyung-Hwa;Choi Sangsup
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.269-273
    • /
    • 1999
  • Combination of mental stress task with noise background is a traditional tool employed in psychophysiology. However, intensity of background noise is a factor affecting both performance on test and psychophysiological responses associated with stress evoked by mental load in noisy environment. In the current study on 7 subjects we analyzed the influence of white noise (WN) intensity (55, 70, and 85 dB[A] ) on psychophysiological responses during word recognition test performed on noise background. There were recorded following physiological variables: electrodermal activity (EDA) , namely, skin conductance level (SCL), skin conductance response (SCR) amplitude (SCR-A), rise time and total number of SCRs (N-SCR); cardiovascular activity, e.g., heart rate (HR), respiratory sinus arrhythmia (RSA) index, pulse transit time (PTT), finger pulse volume (PV), skin temperature (SKT) and respiratory activity, such as respiration rate (RESP-R) and inspiration wane amplitude (RESP-A) during baseline resting state and 40 s long performance on 3 similar Korean word recognition tests with different WN intensity (55, 70, and 85 dB). Electrodermal responses (SCR-A, SCL, N-SCR) demonstrated gradual increment with increased intensity of noise, and this increase of response magnitude with higher intensity of noise was typical also for r skin temperature (phasic SKT decrease) and pulse volume (phasic and tonic PV decrease). However, some cardiovascular and respiratory responses did not exhibit same tendency of gradual increase of reactivity , namely HR, as well as RESP-R and RESP-A showed decrement of response magnitudes. Important finding in terms of cardiovascular reactivity was that 55 and 70dB evoked similar profiles, while 85dB WN resulted in significantly different profile of reactions, suggesting that there exists a threshold level after which intensive auditory stimulation elicits psychophyslological responses pattern of different quality. There are discussed potential autonomic mechanism involved in mediation of observed physiological responses.

  • PDF

ON THE EXTRACTION OF OPTICAL ROTATION CURVES FOR SPIRAL GALAXIES

  • Sohn, Young-Jonh;Rhee, Myung-Hyun;Chun, Mun-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.27-38
    • /
    • 1998
  • We discussed four different methods - the single, double and triple Gaussian fits, and the intensity weighted centroid fit - which extract rotation curves from several emis-sion lines(i.e. [OII], $H{\beta}$, [OIII], and $H{\alpha}$) of spiral galaxies. Spatial extents and the shapes of rotation curves derived through various methods applying to each emission lines of a sample galaxy UGC 11635 are all in a good agreement with one another. Linewidths of $H{\beta}$ and $H{\alpha}$ measure from rotation profiles are in a good agreement with $H{\alpha}$ linewidth of Courteau (1992). however, linewidths of [OII] seems to be much broader than $H{\alpha}$, and the profile of [OIII] does not follow the profile of $H{\alpha}$.

  • PDF

Effects of Surface Termination on Directional Emission from Photonic Crystal Waveguides

  • Chung, K.B.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • We numerically investigate by the finite-difference time-domain method the effects of surface termination on directional emission exiting a photonic crystal waveguide. The directed power and far-field beam profile for the original proposal [E. Moreno et al., Phys. Rev. B 69, 121402 (2004)] and its enhancement [S. K. Morrison et al., Appl. Phys. Lett. 86, 081110 (2005)] are computed for different values of some important parameters. We find another surface termination condition with a positive surface displacement in the structure of the original proposal which has a negative surface displacement. Our surface termination is more effective than the original structure, and nearly as effective as the termination for the enhancement, for directional emission. Besides, our termination is simpler than that for the enhancement. We confirm the effectiveness of directional emission from our termination in its far-field beam profile, radiation intensity distribution, and additionally the wave-vector space representation by the Fourier analysis.

Characterization of Crystal Structure for Nanosized Noble Metal Particles Fabricated by ERC(Evaporation and Rapid Condensation) Method (증기급속응축법 제조 귀금속 나노분말의 결정학적 특성 연구)

  • Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.285-291
    • /
    • 2003
  • The nanosized silver and gold particles are prepared by ERC method in which metal vapors with high temperature is rapidly quenched by coolants such as liquid nitrogen or liquid argon. In order to monitor the crystal structural changes on the internal and the surface of the nanosized noble metal particles, lattice parameter, internal strain and Debye-Waller factor are investigated, and the calculation of X-ray diffraction scattering intensity is performed. The lattice parameters of silver and gold particles agree with those of bulk materials, and crystal internal strain of the metal particles is not changed by rapid cooling. The Debye-Waller factor of gold particles is increased with decreasing particle size because of the surface softening phenomenon of nanosized particles, but the crystal structural change on the surface of the particles is not detected from the comparison the calculated X-ray diffraction profile with the experimental profile on gold particles with the particle size of 4 nm.

An Experimental Investigation of Air Fuel Ratio Measurement using Laser Induced Acetone Fluorescence (아세톤 형광을 이용한 공연비 측정 기법 연구)

  • Park Seungjae;Huh Hwanil;Oh Seungmook
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.353-356
    • /
    • 2002
  • Planar laser induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Preliminary investigation was performed to measure quantitative air excess ratio distribution in an engine fueled with LPG. It is known that fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone was excited by KrF excimer laser (248nm) and its fluorescence image was acquired by ICCD camera with a cut-of filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile was suggested. Raw images were divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which was taken by a calibration process, were converted to air excess ratio distribution. This investigation showed instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

  • PDF