• Title/Summary/Keyword: intensity profile

Search Result 367, Processing Time 0.028 seconds

Effect of Asymmetric Line Heating in SOI Lamp ZMR (Lamp ZMR에 의한 SOI에서 비대칭 선형가열의 효과)

  • 반효동;이시우;임인곤;주승기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 1992
  • In Zone Melting Recrystallization(ZMR) of SOl structure, thin silicon films have been recrystallized by artificial control of beam intensity profile which was obtained by tilting of upper elliptical reflector. Temperature profiles and gradients near solidification interface were calculated by numerical simulation for analysis of asymmetric line heating effect. The larger the tilting angle of the upper reflector, the larger the degree of supercooling at liquid and the interdefect spacing in thin silicon films. Major defects were continuous subgrainboundaries. Isolated threading dislocations were observed in the case of the film having low defect density. We have found that the thin silicon films were recrystallized into (100) textured single crystals by cross-sectional TEM and thin film X-ray diffraction analysis.

  • PDF

Finite element analysis of transient growth of GaAs by horizontal Bridgman method (수평브릿지만법에 의한 갈륨비소 과도기 성장의 유한요소 해석)

  • 김도현;민병수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.19-31
    • /
    • 1996
  • To invetigate the impurity distribution in GaAs crystal grown by horizontal Bridgman method, we constructd the mathematical model describing heat transfer, mass transfer and fluid flow n transient growth of GaAs. Galerkin finite element method and implicit time integration were used to solve the equations and simulate the transient growth. The concentration distribution is similar to the case of diffusion controlled growth when Gr - 0. With the increase of Gr the concentration profile is distroted and the minimum solute concentration appears near the interface. As solidification prosceeds, interface deflection increases steadily and transverse segregation increases until mixing by flow becomes steady. The axial segregation increases with solidification. But, with high intensity of flow axial segregation becomes steady after short transient. At small and large Gr the result showed a good agreememt with the prediction Smith and Scheil.

  • PDF

Release Profile and Stability of Anionic Liposomes (음이온성 리포솜의 방출 거동과 안정성)

  • Nam, Da-Eun;Han, Hee-Dong;Park, Yun-Jung;Kim, Yun-A;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.4
    • /
    • pp.305-310
    • /
    • 2004
  • This study was to prepare the anionic liposomes which were to release anticancer drug (doxorubicin) at the hyperthermia temperature $({\sim}42^{\circ}C)$ and to stabilize in bovine serum solution at $37^{\circ}C$. The vesicle size and zeta potential of liposomes in Tris-HCl buffered solution (pH 7.4) were measured by an electrophoretic light scattering spectrophotometer. To estimate the stability of liposomes, liposome size was measured in bovine serum solution at $37^{\circ}C$ for 72 h. The release of doxorubicin from liposome was determined by measuring the fluorescence intensity using fluorescence spectrophotometry with temperature and time. The size of liposomes was from 120 to 160 nm and zeta potential was from $-33.3{\pm}2.4$ to $-75.6{\pm}6.9\;mV$. Anionic liposome was stabilized in bovine serum solution at $37^{\circ}C$ within 72 h. Additionally, the release transition temperature of doxorubicin from liposomes was increased by increasing mole % of anionic phospholipid.

Large eddy simulation of turbulent flow using the parallel computational fluid dynamics code GASFLOW-MPI

  • Zhang, Han;Li, Yabing;Xiao, Jianjun;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1310-1317
    • /
    • 2017
  • GASFLOW-MPI is a widely used scalable computational fluid dynamics numerical tool to simulate the fluid turbulence behavior, combustion dynamics, and other related thermal-hydraulic phenomena in nuclear power plant containment. An efficient scalable linear solver for the large-scale pressure equation is one of the key issues to ensure the computational efficiency of GASFLOW-MPI. Several advanced Krylov subspace methods and scalable preconditioning methods are compared and analyzed to improve the computational performance. With the help of the powerful computational capability, the large eddy simulation turbulent model is used to resolve more detailed turbulent behaviors. A backward-facing step flow is performed to study the free shear layer, the recirculation region, and the boundary layer, which is widespread in many scientific and engineering applications. Numerical results are compared with the experimental data in the literature and the direct numerical simulation results by GASFLOW-MPI. Both time-averaged velocity profile and turbulent intensity are well consistent with the experimental data and direct numerical simulation result. Furthermore, the frequency spectrum is presented and a -5/3 energy decay is observed for a wide range of frequencies, satisfying the turbulent energy spectrum theory. Parallel scaling tests are also implemented on the KIT/IKET cluster and a linear scaling is realized for GASFLOW-MPI.

The Genetic Diversity Analysis of the Bacterial Community in Groundwater by Denaturing Gradient Gel Electrophoresis (DGGE)

  • Cho, Hong-Bum;Lee, Jong-Kwang;Choi, Yong-Keel
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.327-334
    • /
    • 2003
  • This study employed two PCR-based 16S rDNA approaches, amplified rDNA restriction analysis (ARDRA) and denaturing gradient gel electrophoresis (DGGE), to characterize the bacterial community structure in groundwater. Samples were collected from groundwater for the use by private residences, as well as for industrial and agricultural purposes, in Ansan City. Each PCR product was obtained by PCR with eubacteria 16S rDNA and variable V3 region specific primer sets. After amplification, the 16S rDNA PCR products were digested with 4-base site specific restriction endonucleases, and the restriction pattern analyzed. The genetic diversity and similarity of the groundwater bacterial community was analyzed by eubacteria universal primer sets for the amplification of variable V3 regions of the bacterial 16S rDNA. The result of the bacterial community analysis, by ARDRA and DGGE, revealed the same pattern. The highest diversity was found in groundwater from site G1, which was used in residences. In the DGGE profile, a high intensity band was sequenced, and revealed to be Pseudomonas sp. strain P51.

Experimental Study on the Effects of Upstream Wakes on Cascade Flow (상류 후류의 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyeong-Ju;Jo, Gang-Rae;Ju, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.330-338
    • /
    • 2001
  • This paper is concerned with the effect of cylinder wakes upstream on blade characteristics of compressor cascade(NCA 65 series). At first, it is found that the velocity defect ratio of cylinder wake varies according to the acceleration and deceleration in a flow field but, is conserved nearly constant at flow downstream the cascade, irrespective of the flow path in the cascade. When a cylinder wake flows along near the suction surface of the blade, or impinges on the leading edge, the turbulent velocities are supplied on or inside the outer edge of boundary layer near the leading edge of suction surface, and the transition to a transitional or turbulent boundary layers is induced, so that the laminar separation is prevented, but the profile loss increases. The transition of boundary layer to a transitional or turbulent one is strongly related with the strength of added turbulent velocities near the leading edge on the suction surface, which is influenced by the flow path of a cylinder wake.

Study on Seabed Mapping using Two Sonar Devices for AUV Application (복수의 수중 소나를 활용한 수중 로봇의 3차원 지형 맵핑에 관한 연구)

  • Joe, Hangil;Yu, Son-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.94-102
    • /
    • 2021
  • This study addresses a method for 3D reconstruction using acoustic data with heterogeneous sonar devices: Forward-Looking Multibeam Sonar (FLMS) and Profiling Sonar (PS). The challenges in sonar image processing are perceptual ambiguity, the loss of elevation information, and low signal to noise ratio, which are caused by the ranging and intensity-based image generation mechanism of sonars. The conventional approaches utilize additional constraints such as Lambertian reflection and redundant data at various positions, but they are vulnerable to environmental conditions. Our approach is to use two sonars that have a complementary data type. Typically, the sonars provide reliable information in the horizontal but, the loss of elevation information degrades the quality of data in the vertical. To overcome the characteristic of sonar devices, we adopt the crossed installation in such a way that the PS is laid down on its side and mounted on the top of FLMS. From the installation, FLMS scans horizontal information and PS obtains a vertical profile of the front area of AUV. For the fusion of the two sonar data, we propose the probabilistic approach. A likelihood map using geometric constraints between two sonar devices is built and a monte-carlo experiment using a derived model is conducted to extract 3D points. To verify the proposed method, we conducted a simulation and field test. As a result, a consistent seabed map was obtained. This method can be utilized for 3D seabed mapping with an AUV.

Structure Analyses of Rubber/Filler System under Shear Flow by Using Time Resolved USAXS Method

  • Nishitsuji, Shotaro;Takenaka, Mikihito;Amino, Naoya;Ishikawa, Yasuhiro
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.156-160
    • /
    • 2019
  • The changes in the dispersion of carbon black in liquid polyisoprene under shear flow with time have been investigated by time-resolved ultra small-angle X-ray scattering (USAXS) method. The analyses of USAXS profile immediately after the start of shear flow clarified that the aggregates of carbon black with a mean radius of gyration of 14 nm and surface fractal dimension of 2.5 form the fractal network structure with mass-fractal dimension of 2.9. After the application of the shear flow, the scattering intensity increases with time at the observed whole entire q region, and then the a shoulder appears at $q=0.005nm^{-1}$, indicating that the agglomerate is broken and becomes smaller by shear flow. The analysis by the Unified Guinier/Power-law approach yielded several characteristic parameters, such as the sizes of aggregate and agglomerate, mass-fractal dimension of agglomerate, and surface fractal dimension of the primary particle. While the mean radius of gyration of the agglomerate decreases with time, the mean radius of gyration of the aggregate, mass fractal dimension, and surface fractal dimension don't change with time, indicating that the aggregates peel off the surface of the agglomerate.

Modification of conventional X-ray diffractometer for the measurement of phase distribution in a narrow region

  • Park, Yang-Soon;Han, Sun-Ho;Kim, Jong-Goo;Jee, Kwang-Yong;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.407-414
    • /
    • 2006
  • An X-ray diffractometer for spatially resolved X-ray diffraction measurements was developed to identify phase in the narrow (micron-scaled) region of high burn-up fuels and some nuclear materials. The micro-XRD was composed of an X-ray microbeam alignment system and a sample micro translation system instead of a normal slit and a fixed sample stage in a commercial XRD. The X-ray microbeam alignment system was fabricated with a microbeam concentrator having two Ni deposited mirrors, a vertical positioner, and a tilt table for the generation of a concentrated microbeam. The sample micro translation system was made with a sample holder and a horizontal translator, allowing movement of a specimen at $5{\mu}m$ steps. The angular intensity profile of the microbeam generated through a concentrator was symmetric and not distorted. The size of the microbeam was $4,000{\times}20{\mu}m$ and the spatial resolution of the beam was $47{\mu}m$ at the sample position. When the diffraction peaks were measured for a $UO_2$ pellet specimen by this system, the reproducibility ($2{\Theta}={\pm}0.01^{\circ}$) of the peaks was as good as a conventional X-ray diffractometer. For the cross section of oxidized titanium metal, not only $TiO_2$ in an outer layer but also TiO near an oxide-metal interface was observed.

Effects of treadmill exercise on the regulatory mechanisms of mitochondrial dynamics and oxidative stress in the brains of high-fat diet fed rats

  • Koo, Jung-Hoon;Kang, Eun-Bum
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.1
    • /
    • pp.28-35
    • /
    • 2019
  • [Purpose] The purpose of this study was to investigate the effects of treadmill exercise on oxidative stress in the hippocampal tissue and mitochondrial dynamic-related proteins in rats fed a long-term high-fat diet (HFD). [Methods] Obesity was induced in experimental animals using high fat feed, and the experimental groups were divided into a normal diet-control (ND-CON; n=12), a high fat diet-control (HFD-CON; n=12) and a high fat diet-treadmill exercise (HFD-TE; n=12) group. The rats were subsequently subjected to treadmill exercise (progressively increasing load intensity) for 8 weeks (5 min at 8 m/min, then 5 min at 11 m/min, and finally 20 min at 14 m/min). We assessed weight, triglyceride (TG) concentration, total cholesterol (TC), area under the curve, homeostatic model assessment of insulin resistance, and AVF/body weight. Western blotting was used to examine expression of proteins related to oxidative stress and mitochondrial dynamics, and immunohistochemistry was performed to examine the immunoreactivity of gp91phox. [Results] Treadmill exercise effectively improved the oxidative stress in the hippocampal tissue, expression of mitochondrial dynamic-related proteins, and activation of NADPH oxidase (gp91phox) and induced weight, blood profile, and abdominal fat loss. [Conclusion] Twenty weeks of high fat diet induced obesity, which was shown to inhibit normal mitochondria fusion and fission functions in hippocampal tissues. However, treadmill exercise was shown to have positive effects on these pathophysiological phenomena. Therefore, treadmill exercise should be considered during prevention and treatment of obesity-induced metabolic diseases.