• Title/Summary/Keyword: intensity of rainfall

Search Result 759, Processing Time 0.036 seconds

Rainfall Threshold (ID curve) for Landslide Initiation and Prediction Considering Antecedent Rainfall (선행강우를 고려한 산사태 유발 강우기준(ID curve) 분석)

  • Hong, Moon-Hyun;Kim, Jung-Hwan;Jung, Gyung-Ja;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.15-27
    • /
    • 2016
  • This study was conducted to suggest a landslide triggering rainfall threshold (ID curve) for landslide prediction by considering the effect of antecedent rainfall. 202 rainfall data including domestic landslide and rainfall records were used in this study. In order to consider the effect of antecedent rainfall, rainfall data were analyzed by changing Inter Event Time Definition (IETD) and IETD based ID curve were presented by regression analysis. Compared to the findings of the previous studies, the presented ID curve has a tendency to predict the landslides occurring at a relatively low rainfall intensity. It is shown that the proposed ID curve is appropriate and realistic for predicting landslides through the validation of proposed ID curve using records of landslides in 2014. Based on this analysis, it is found that the longer IETD, the greater the effect of antecedent rainfall, and the steeper the gradient of ID curve. It is also found that the rainfall threshold (intensity) is higher for the short period rainfall and lower for the long period rainfall.

Application of Images and Data of Satellite to a Conceptual Model for Heavy Rainfall Analysis (호우사례 분석을 위한 개념모델 구성에 위성영상과 위성자료의 활용 연구)

  • Lee, Kwang-Jae;Heo, Ki-Young;Suh, Ae-Sook;Park, Jong-Seo;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.131-151
    • /
    • 2010
  • This study establishes a conceptual model to analyze heavy rainfall events in Korea using multi-functional transport satellite-1R satellite images. Three heavy rainfall episodes in two major synoptic types, such as synoptic low (SL) type and synoptic flow convergence (SC) type, are analyzed through a conceptual model procedure which proceeds on two steps: 1) conveyer belt model analysis to detect convective area, and 2) cloud top temperature analysis from black body temperature (TBB) data to distinguish convective cloud from stratiform cloud, and eventually estimate heavy rainfall area and intensity. Major synoptic patterns causing heavy rainfall are Changma, synoptic low approach, upper level low in the SL type, and upper level low, indirect effect of typhoon, convergence of tropical air in the SC type. The relationship between rainfall and TBBs in overall well resolved areas of heavy rainfall. The SC type tended to underestimate the intensity of heavy rainfall, but the analysis with the use of water vapor channel has improved the performance. The conceptual model improved a concrete utilization of images and data of satellite, as summarizing characteristics of major synoptic type causing heavy rainfall and composing an algorism to assess the area and intensity of heavy rainfall. The further assessment with various cases is required for the operational use.

Derivation of Probable Rainfall-Intensity Formula in the Cheju Districts (제주지방(濟州地方)의 확률강우강도식(確率降雨强度式) 유도(誘導))

  • Kim, Chul Soon;Rim, Byung Dae;Kim, Woon Joong;Pyo, Yong Pyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.183-190
    • /
    • 1993
  • It is desirable to utilize the result after studying the rainfall characteristics including the latest observation data in the districts for the sake of establishment of the more accurate plans for drainage or plans for hydraulic stuctures because the rainfall phenomena are different in their characteristics by regional groups and if we make a meteorological observation for a long period of time, the rainfall characteristics also change a great deal as compared with the preceding years. Therefore, we selected only the annual maximum rainfall from the self-recording rain gauge of the main rainfall observation station (Cheju, Sogwipo, Songsanpo) in the Cheju districts in the last twenty years, extracted the rainfall by actual measurement by the rainfall duration, and induced the optimal probable rainfall-intensity formulas by regional groups in the Cheju districts, taking advantage of the rainfall formulas being in wide use in general, that is, Talbot type, Sherman type, Japanese type, and new Semi-log type. As the result, the return periods at Cheju station appeared to be three years to five years and the optimal probable rainfall-intensity formula at Cheju station, Japanese type and outside the city, Talbot type; Sogwipo, Sherman type; Songsanpo, Talbot type respectively.

  • PDF

Exploring the Relationship between the Kinetic Energy and Intensity of Rainfall in Sangju, Korea

  • Van, Linh Nguyen;Le, Xuan-Hien;Yeon, Minho;Thi, Tuyet-May Do;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.151-151
    • /
    • 2022
  • The impact of raindrops on the soil surface causes soil detachment, which may be estimated by measuring the kinetic energy (KE) of the raindrops. Since direct measurements of rainfall force on ground surfaces are not generally available, empirical equations are an alternative option to estimate KE from rainfall intensity (I), which has the greatest influence over soil erosion and is easily accessible. Establishing the optimal formulation for the relationship between kinetic energy and rainfall intensity has proven to be difficult. Thus, this research considered thirty-seven rainfall events observed from June 2020 to December 2021 using a laster optical disdrometer erected in Kyungpook National University to examine the characteristics of KE-I relationships. We concentrated our discussion on the formation of two different expressions of the KE, including KE expenditure (KEexp) and KE content (KEcon). The following conclusions were drawn: (1) We employed statistical analysis to demonstrate that the KEexp is more suitable expression for establishing an empirical rule between KE and I than the KEcon. (2) A power-law model was used to find the best correlation between KEexp-I relationship, whereas the best match between KEcon and I were found using an exponential equation.

  • PDF

Suggestion of Probable Rainfall Intensity Formula Considering the Pattern Change of Maximum Rainfall at Incheon City (최대강우 패턴 변화를 고려한 인천지방 확률강우강도식의 제안)

  • Han Man-Shin;Choi Gye-Woon;Chung Yeun-Jung;Ahn Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.521-531
    • /
    • 2006
  • The formula was proposed through the examination of probability rainfall intensity formula used in Incheon based upon recent occurrences of heavy rain and extraordinary storms. Random-time maximum annual rainfalls were estimated for durations from ten minutes to twenty-four hours from the data by Korea Meteorological Administration. Eleven types of probability distribution are considered to estimate probable rainfall depths for different storm durations at Incheon city. Three goodness-of-fit tests including Chi-square, Kolmogorov-Smirmov and framer Von Misses were used to analyze the tendency of recent rainfall. Considering maximum rainfall occurred, General Extreme Value(GEV) distribution was chosen as the appropriate probability distribution. Five types of probability rainfall formulas including Talbot type, Sherman type, Japanese type, unified type I and unified type II are considered to determine the best type for rainfall intensity at Incheon. The formula was determined considering the time of concentration of sewer system and river at Incheon city. Unified type I was chosen for its accuracy and was proposed to represent rainfall intensity of Incheon district.

Probabilistic Analysis of Independent Storm Events: 1. Construction of Annual Maximum Storm Event Series (독립호우사상의 확률론적 해석: 1. 연최대 호우사상 계열의 작성)

  • Park, Min-Kyu;Yoo, Chul-Sang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.127-136
    • /
    • 2011
  • In this study, annual maximum storm events are proposed to determined by the return periods considering total rainfall and rainfall intensity together. The rainfall series at Seoul since 1961 are examined and the results are as follows. First, the bivariate exponential distribution is used to determine annual maximum storm events. The parameter estimated annually provides more suitable results than the parameter estimated by whole periods. The chosen annual maximum storm events show these properties. The events with the biggest total rainfall tend to be selected in the wet years and the events with the biggest rainfall intensity in the wet years. These results satisfy the concept of critical storm events which produces the most severe runoff according to soil wetness. The average characteristics of the annual maximum storm events said average rainfall intensity 32.7 mm/hr in 1 hr storm duration(total rainfall 32.7 mm), average rainfall intensity 9.7 mm/hr in 24 hr storm duration(total rainfall 231.6 mm) and average rainfall intensity 7.4 mm/hr in 48 hr storm duration(total rainfall 355.0 mm).

A Study on Change of Suspended Solids by Forest Road Construction(I) -Parallel Watersheds Method- (임도개설(林道開設)에 따른 부유토사량(浮遊土砂量) 변화(變化)(I) -대조유역법(對照流域法)을 중심(中心)으로-)

  • Kim, Kyoung-Jin;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.57-65
    • /
    • 1994
  • This study was carried out to clarify the sediment export by measuring suspended solids included in streamflow during the rainy season. The study area is located in Experimental Forests, Kangwon National University, where the forest road is under construction. For this purpose, the forest watershed with construction of forest road was compared with normal forest watershed in amount of rainfall and discharge, suspended solids and discharge, and the amount of rainfall and suspended solids. The results were shown as followings. 1. The relationship of discharge and the amount of rainfall was shown as Table 3 and Fig. 3. The delay time of peak point observed in hydrograph was changed by rainfall intensity and amount of previous rainfall. That is, when there was a rain on 12. Jun(more than 20mm/hour for hours), the peak point began three hours after the rainfall intensity over 20mm/hour, and showed $1514m^3/hour$ in automatic water level recorder. In case of the 8th of Aug.(maximum rainfall intensity: 40mm/hour), the peak point of discharge was $1246m^3/hour$ in the same time with maximum rainfall intensity. And on the 20th of Aug.(the maximum rainfall intensity: 17.2mm/hour), the peak point of discharge was $1245m^3/hour$ two hours after the maximum rainfall intensity. 2. On watershed under forest road construction, the relationship between discharge and suspended solids is that suspended solids was proportionately increased by raising discharge. That is, on the 12th of Jun, the maximum of discharge per hour was $1514m^3/hour$ and 1261mg/l of suspended solids was observed an hour after peak point of discharge. And in case of 8th and 20th Aug., each of peak points is $1246m^3/hour$ and $1245m^3/hour$ by measuring time. The maximums of suspended solids measured within two watersheds were examined in value of 4952mg/l and 472mg/l at the same time. 3. During the rainy season, the concentration of suspended solids was influenced by rainfall intensity and indicated especially curve-regressional increase in case of strong rainfall intensity. In each of watersheds, the maximums of suspended solids were 1261mg/l and 125mg/l, 4952mg/l and 44mg/l, and 472mg/l and 4mg/l by the order of rain(a), (b), and (c). Two watersheds showed a remarkable difference.

  • PDF

Analysis of Seepage Velocity in Unsaturated Weathered Soils Using Rainfall Infiltration Test (강우침투실험을 통한 불포화 풍화토 지반의 강우 침투속도 분석)

  • Kim, Hoon;Shin, Ho-Sung;Kim, Yun-Tae;Park, Dug-Keun;Min, Tuk-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Rainfall infiltration test under one dimensional condition is conducted to evaluate the effect of rainfall intensity on seepage velocity and infiltration characteristics for initial unsaturated sediment. Experimental results are compared with those numerical simulations with respect to variations of pore water pressure, degree of saturation and discharge velocity with time, and both results give good agreement. High rainfall intensity tends to increase seepage velocity almost linearly. But it shows rapid increase as rainfall intensity approaches saturated hydraulic conductivity of the sediment. In addition, the upper part of wetting front depth is partially saturated, not fully. Therefore, actual wetting front depth is considered to advance faster than theoretical prediction, which leads to slope instability of unsaturated slope due to surface rainfall.

An Offer of Relation between Rainfall and Unit Hydrograph in a Small Basin (소규모 유역에서 강우와 단위유량도의 관계 제시)

  • Yoo, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.635-643
    • /
    • 2010
  • A representative unit hydrograph responding to a small basin is used to calculate the flood discharge in the basin. The peak discharge and the time to peak of the unit hydrograph are dealt with its characteristic values. In this study it is shown and analyzed the fluctuations at peak discharges and times to peak of unit hydrographs by rainfall storms in a small national basin $8.5\;km^2$ wide are no small. And on assumption that a major factor in the fluctuations of the unit hydrographs in a small basin be rainfall intensity of a rainstorm, both relations of peak discharge and time to peak with rainfall intensity are suggested as exponential functions respectively. In this result although it is a limit of the study in which its result is accompanied with not small dispersion in the peak values of unit hydrograph due to a defect in used data it is sure an averaging regression relation between peak discharge and time to peak with rainfall intensity as identified in this study has hydrological worth from the complementary viewpoint of the theory of unit hydrograph.

Evaluation of Relationship between Rainfall Intensity for Duration of Watersheds and Peak Water Levels of Local Rivers (지방하천 유역의 지속시간별 강우강도와 첨두수위 관계식 산정)

  • Choi, Han-Kuy;Kong, Ji-Hyuk;Baek, Hyou-Sun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.71-78
    • /
    • 2011
  • As the need for predicting the flood stage of river from torrential downpouring caused by climate change is increasingly emphasized, the study, centered on the area of Gangwon-do Inje-gun and Jeongseon-gun of local river, is to develop peak water level regression equation by rainfall. Through the correlation between rainfall and peak water level, it is confirmed that rainfall according to duration and peak water level have a high correlation coefficient. Based on this, a relational expression of rainfall and peak water level is verified and then the adequacy of the calculated expression is analyzed and the result shows that a very accurate prediction is not easy to achieve but a rough prediction of the change of water level at each point is possible.

  • PDF