• Title/Summary/Keyword: intensity of rainfall

Search Result 757, Processing Time 0.021 seconds

Evaluation of Surface Covering Methods for Reducing Soil Loss of Highland Slope in Soybean Cultivation (고랭지 경사 밭 콩 재배지에서 토양유실경감을 위한 피복방법 평가)

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Kim, Jeom-Soon;Han, Kyung-Hwa;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.725-732
    • /
    • 2012
  • There is relatively high vulnerability of soil erosion in slope highland agriculture due to a reclamation of mountain as well as low surface covering during early summer with high rainfall intensity. Especially, in soybean cultivation, soil disturbance by conventional tillage and exposure of topsoil at the early stage of soybean have intensified soil loss. The aim of this study was to evaluate various surface covering methods for reducing soil loss in highland soybean cultivation. The experiment was conducted in 17% sloped lysimeter ($2.5m{\times}13.4m$) with 8 treatments. Amount of runoff water and eroded soil, and soybean growth were investigated. Surface covering through sod culture and plant residue showed 3.4~45.0 runoff water amount with $177{\sim}2,375m^3\;ha^{-1}$ compared with control ($5,274m^3\;ha^{-1}$). And the amount of eroded soil was also reduced by 95% in surface covering treatment with $0.02{\sim}1.94Mg\;ha^{-1}$ than control with $40.72Mg\;ha^{-1}$. Yields of soybean pod showed $0.3Mg\;ha^{-1}$ in rye sod culture, $1.3Mg\;ha^{-1}$ in Ligularia fischeri var. spiciformis Nakai, $0.7Mg\;ha^{-1}$ in Aster koraiensis Nakai, $0.2Mg\;ha^{-1}$ in red clover and $2.0Mg\;ha^{-1}$ in non-covering, on the other hand, covering with cut rye showed $3.8Mg\;ha^{-1}$. Conclusively, covering the soil surface with cut rye were beneficial for reduction of soil loss without decreasing soybean yield in highland sloped fields.

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF

Temporal and Spatial Variations of Precipitation in South Korea for Recent 30 Years (1976-2005) and Geographic Environments (최근 30년간(1976-2005) 우리나라 강수의 시.공간변동과 지리환경)

  • Hong, Ki-Ok;Suh, Myoung-Seok;Rha, Deuk-Kyun
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.433-449
    • /
    • 2006
  • Temporal and spatial variations of precipitation in South Korea are investigated using 60 observation data of the recent 30-years from 1976 to 2005. The area averaged annual precipitation amount is about 1310 mm and shows a strong spatial variation, maximum at the southern and Kyoungki province (>1300 mm) and minimum at the Kyungpook province(<1100 mm). The precipitation days show a strong spatial variation with maximum at the Sobaik mountain region(>100 days) and minimum at the Kyungpook province (<90 days). The interannual variations (IAV) of precipitation amount and days are more significant at the southern and eastern part of Sobaik and Taebaik mountain, and along the Sobaik mountain, respectively. So, the difference of annual precipitation amount reaches to about 800mm between wet and dry years at the southern part of Korean peninsula. Whereas, the IAV of precipitation intensity is strong at the southern and middle part of South Korea with a minimum between two maxima. Also, seasonal variations are closely linked with the geographic environments (elevation, distance from ocean, location relative to the Taebaik mountain). Therefore, maximum and minimum of seasonal variations of precipitation are occurred at the northern inland region (ratio of summer to the annual precipitation (RSAP) is greater than 60%), eastern and southern coastal regions (RSAP is less than 53%),respectively. And the RSAP is slightly increased from 50% to 55% comparing the Ho and Kang (1988). The consistent and strong positive relation between the heavy rainfalls, the ratio of heavy rainfalls to annual precipitation and the annual precipitation indicates that heavy rainfall is more frequent and strong at the maximum annual precipitation region.

Characteristic of Raindrop Size Distribution Using Two-dimensional Video Disdrometer Data in Daegu, Korea (2차원 광학 우적계 자료를 이용한 대구지역 우적크기분포 특성 분석)

  • Bang, Wonbae;Kwon, Soohyun;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.511-521
    • /
    • 2017
  • This study analyzes Two-dimensional video disdrometer (2DVD) data while summer 2011-2012 in Daegu region and compares with Marshall and Palmer (MP) distribution to find out statistical characteristics and characteristics variability about drop size distribution (DSD) of Daegu region. As the characterize DSD of Daegu region, this study uses single moment parameters such as rainfall intensity (R), reflectivity factor (Z) and double moment parameters such as generalized characteristics number concentration ($N{_0}^{\prime}$) and generalized characteristics diameter ($D{_m}^{\prime}$). Also, this study makes an assumption that DSD function can be expressed as general gamma distribution. The results of analysis show that DSD of Daegu region has ${\log}_{10}N{_0}^{\prime}=2.37$, $D{_m}^{\prime}=1.04mm$, and c =2.37, ${\mu}=0.39$ on average. When the assumption of MP distribution is used, these figures then end up with the different characteristics; ${\log}_{10}N{_0}^{\prime}=2.27$, $D{_m}^{\prime}=0.9mm$, c =1, ${\mu}=1$ on average. The differences indicate liquid water content (LWC) of Daegu distribution is generally larger than MP distribution at equal Z. Second, DSD shape of Daegu distribution is concave upward. Other important facts are the characteristics of Daegu distribution change when Z changes. DSD shape of Daegu region changes concave downward (c =2.05~2.55, ${\mu}=0.33{\sim}0.77$) to cubic function-like shape (c =3.0, ${\mu}=-0.13{\sim}-0.33$) at Z > 45 dBZ. 35 dBZ ${\leq}$ Z > 45 dBZ group of Daegu distribution has characteristics similar to maritime cluster of diverse climate DSD study. However, Z > 45 dBZ group of Daegu distribution has a difference from the cluster.

Conidial Disperse of the Pepper Anthracnose Fungus Colletotrichum acutatum and Its Density on Infected Fruits (고추 탄저병균(Colletotrichum acutatum)의 분생포자 비산과 과실병반에 형성된 전염원 밀도)

  • Jee, Hyeong-Jin;Shin, Shun-Shan;Lee, Ji-Hyun;Kim, Won-Il;Hong, Sung-Jun;Kim, Yong-Ki
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.101-105
    • /
    • 2010
  • This study was aimed to understand conidial disperse of the pepper anthracnose fungus Colletotrichum acutatum, elapse time for the disease development, and inoculum potentials on infected fruits. Most (99.2%) conidia of the fungus disseminated from inoculum source on the rainy day, while only 0.8% conidia dispersed on the sunny day. Among the conidia 93.3% were caught under 60 cm height at 30 cm distance; however, conidia were detected at 120 cm height at the distance. Relatively susceptible pepper fruits to anthracnose showed first visible symptoms at 4 days after infection under a mimic field condition. However, it seemed that over 10 days are required for the disease to develop on moderately resistant pepper fruits under unfavorable conditions. The number of conidia formed on a lesion was positively correlated with the lesion size ($R^{2}=0.88$). Over 10 millions of conidia were formed at a normal lesion size 1.5 cm in length. In some large coalesced lesions ca. 4cm in length produced over 100 millions of the fungal conidia. Results further confirmed that the rainfall is the key factor for the inoculum disperse of the pepper anthracnose pathogen, Colletotrichum acutatum, and a long distance dissemination is plausible according to rain and wind intensity. Consequently, rain-proof structures are ideal to avoid the disease, and removal of infected fruits and timely chemical spray are indispensible to reduce the inoculum potential in the field.

Vulnerability Assessment of Cultivation Facility by Abnormal Weather of Climate Change (이상기후에 의한 재배시설의 취약성 평가)

  • Yoon, Seong-Tak;Lee, Yong-Ho;Hong, Sun-Hee;Kim, Myung-Hyun;Kang, Kee-Kyung;Na, Young-Eun;Oh, Young-Ju
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.264-272
    • /
    • 2013
  • Climate changes have caused not only changes in the frequency and intensity of extreme climate events, but also temperature and precipitation. The damages on agricultural production system will be increased by heavy rainfall and snow. In this study we assessed vulnerability of crop cultivation facility and animal husbandry facility by heavy rain in 232 agricultural districts. The climate data of 2000 years were used for vulnerability analysis on present status and the data derived from A1B scenario were used for the assessment in the years of 2020, 2050 and 2100, respectively. Vulnerability of local districts was evaluated by three indices such as climate exposure, sensitivity and adaptive capacity, and each index was determined from selected alternative variables. Collected data were normalized and then multiplied by weight value that was elicited in delphi investigation. Jeonla-do and Gangwon-do showed higher climate exposures than the other provinces. The higher sensitivity to abnormal weather was observed from the regions that have large-scale cultivation facility complex compared to the other regions and vulnerability to abnormal weather also was higher at these provinces. In the projected estimation based on the SRES A1B, the vulnerability of controlled agricultural facility in Korea totally increased, especially was dramatic between 2000's and 2020 year.

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF