International Journal of Fluid Machinery and Systems
/
제2권2호
/
pp.165-171
/
2009
We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.
International Journal of Fluid Machinery and Systems
/
제10권3호
/
pp.254-263
/
2017
The cavitation erosion remains an industrial issue for many applications. This paper deals with the cavitation intensity, which can be described as the fluid mechanical loading leading to cavitation damage. The estimation of this quantity is a challenging problem both in terms of modeling the cavitating flow and predicting the erosion due to cavitation. For this purpose, a numerical methodology was proposed to estimate cavitation intensity from 3D unsteady cavitating flow simulations. CFD calculations were carried out using Code_Saturne, which enables U-RANS equations resolution for a homogeneous fluid mixture using the Merkle's model, coupled to a $k-{\varepsilon}$ turbulence model with the Reboud's correction. A post-process cavitation intensity prediction model was developed based on pressure and void fraction derivatives. This model is applied on a flow around a hydrofoil using different physical (inlet velocities) and numerical (meshes and time steps) parameters. The article presents the cavitation intensity model as well as the comparison of this model with experimental results. The numerical predictions of cavitation damage are in good agreement with experimental results obtained by pitting test.
본 논문은 선박 추진기의 캐비테이션 침식현상을 연구하기 위하여 추진기에서 발생하는 소음과 캐비테이션 격렬도의 연관성에 대하여 분석하였다. 캐비테이션 침식은 캐비테이션 붕괴의 빈도와 강도로 정의 할 수 있는 '캐비테이션 격렬도'와 밀접히 연관되어 있다. 캐비테이션 붕괴에 의해서 발생하는 압력파는 다양한 진폭과 지속시간의 연속적인 펄스의 형태로 나타나며 이를 캐비테이션 거동과 동조 분석하여 캐비테이션 붕괴에 따른 추진기 소음 연관성을 파악하였다. 이 기법을 경사축 추진기시험을 활용하여 추진기침식시험에 대한 정량적 평가방안을 제시하였다.
The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exit the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculation of the internal flow in a single hole type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and up-stream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle position. The diesel nozzle with sharp inlet under actual engine condition has possibility of cavitation, but round inlet nozzle has no possibility of cavitation.
초음파 캐비테이션 현상이란 강한 초음파 조사 조건에서 매질(주로 유체) 내에서 미세기포를 발생시키고, 천이시키는 물리적 현상을 의미한다. 본 연구에서는 초음파 캐비테이션 발생량의 정량적 평가를 위하여 초음파 조사조건에 따른 기포군의 초음파 음향 특성변화를 관찰하였다. 중심 주파수가 500 kHz. 1.1 MHz인 곡면형 단일 초음파 변환기를 이용하여 캐비테이션 현상을 발생시켰으며, 형성되는 기포군을 가로지르는 2.25 MHz 간섭 초음파를 송/수신하여 분석하였다. 본 연구에서는 캐비테이션 발생량 평가를 위한 파라미터로 투과하는 파의 중심주파수 변화 및 감쇠 특성, 전파시간을 제시하였으며, 캐비테이션 발생 조건(조사 강도 및 여기 신호, 중심주파수)에 따른 변화를 관찰하였다. 획득된 간섭 초음파 수신신호를 분석한 결과, 중심 주파수의 변화의 경우 상관계수는 낮지만 조사 강도에 따른 상관관계를 확인할 수 있었으며, 특정 조사 조건에서 주목할 만한 급격한 중심 주파수 변화가 관찰되었다. 조사조건에 따른 간섭 초음파의 감쇠 추세는 모든 조건에서 높은 상관관계를 보였으며, 캐비테이션 발생형태에 영향을 받지 않는 것으로 확인되었다. 조사조건에 따른 전파 시간의 변화는 관찰되지 않았다. 차후 다양한 조사조건에 대한 평가를 통하여 보다 정량적인 캐비테이션 발생량 평가가 가능할 것으로 판단되며, 이러한 정량적 평가는 고강도 초음파 치료에서 발생할 수 있는 현상에 대한 기초 연구로서 활용 가능할 것으로 사료된다.
This paper was studied on the cavitation instability of a Solution Pump Inducer in an absorption chiller-heater. Inlet pressure of LiBr and rotational speed at nominal mode are 2,800 Pa and 3,500 rpm respectively. Due to the marginal operation of available NPSH, the cavitation performance of the inducer is critical for the stable operation without the deterioration of head performance. In the study, cavitation performance and its mode of instability was investigated experimentally. Water was used as the working fluid and the test inducer was scaled up as 1.75 times for detail measurements and flow visualization. Inlet pressure was controlled by a vacuum pump. This research focused on types of cavitation instability and phenomena to investigate the possibility of harmful damage due to cavitation instability. Casing wall pressure and instantaneous inlet pressure was measured to observe the unsteady flow characteristics. Through the visualization and spectrum analysis of pressure, the occurrence region and intensity of asymmetric cavitation and cavitation surge are analyzed in the test inducer.
Recently, cavitation on the surface of mechanical heart valve has been studied as a cause of fractures occurring in implanted Mechanical Heart Valves (MHVs). It has been conceived that the MHVs mounted in an artificial heart close much faster than in vivo sue, resulting in cavitation bubbles formation. In this study, six different kinds of mono leaflet and bileaflet valves were mounted in the mitral position in an Electro-Hydraulic Total Artificial Heart (EHTAH), and we investigated the mechanisms for MHV cavitation. The valve closing velocity and a high speed video camera were employed to investigate the mechanism for MHV cavitation. The closing velocity of the bileaflet valves was slower than that of the mono leaflet valves. Cavitation bubbles were concentrated on the edge of the valve stop and along the leaflet tip. It was established that squeeze flow holds the key to MHV cavitation in our study. Cavitation intensity increased with an increase in the valve closing velocity and the valve stop area. With regard to squeeze flow, the bileaflet valve with slow valve-closing velocity and small valve stop areas is better able to prevent blood cell damage than the monoleaflet valves.
Kuznetsova, Elena L.;Starovoitov, Eduard I.;Vakhneev, Sergey;Kutina, Elena V.
Advances in aircraft and spacecraft science
/
제9권2호
/
pp.95-102
/
2022
The paper investigates the process of pulsation of a spherical cavity (bubble) in a liquid under the influence of a source of ultrasonic vibrations. The process of pulsation of a cavitation pocket in liquid is investigated. The Kirkwood-Bethe model was used to describe the motion. A numerical solution algorithm based on the Runge-Kutta-Felberg method of 4-5th order with adaptive selection of the integration step has been developed and implemented. It was revealed that if the initial bubble radius exceeds a certain value, then the bubble will perform several pulsations until the moment of collapse. The same applies to the case of exceeding the amplitude of ultrasonic vibrations of a certain value. The proposed algorithm makes it possible to fully describe the process of cavitation pulsations, to carry out comprehensive parametric studies and to evaluate the influence of various process parameters on the intensity of cavitation.
In this study, in order to evaluate the yield of bubble by ultrasonic cavitation in HIFU sonication, the bubble image analysis was performed. The changing phenomenon of cavitation effect according to the sonication condition was discussed by analyzing the bubble image. Especially the appearance of bubble cloud, the size of micro-bubble, and the yield of bubble were considered. The 500 KHz and 1.1 MHz concave type ultrasonic transducers were used for HIFU sonication. Computer controlled digital camera was used to obtain the bubble image, and the binary image processing(binarization coefficient : 0.15) was performed to analyze them. In results of 500 KHz and 1.1 MHz transducer, the area of bubble cloud was increased in proportion to the rise in sonication intensity($R^2$ : 0.7031 and 0.811). The mean size of single microbubble was measured as 98.18 um in 500 KHz sonication, and 63.38 um in 1.1 MHz sonication. In addition, the amount of produced bubble was increased in proportion to sonication intensity. Through the result of this study and further study for variable image processing method, the quantitative evaluation of ultrasonic cavitation effects in HIFU operation could be possible with the linearity associated with the sonication conditions.
Cavitation can occur in pipes when liquid is moving at high velocity, especially at pittings where the smooth bore of the pipe is interrupted. The effect is usually to produce pitting on the downstream side of the turbulence. However, stress corrosion cracking behavior under cavitation erosion-corrosion was neatly unknown. In this study, therefore, some were investigated of stress corrosion cracking behavior, others were stress corrosion cracking behavior under cavitation erosion-corrosion of water injection. And datas obtained as the results of experiment were compared between the two. Mainresult obtained are as follows: 1) Stress corrosion cracking growth rate of heat affected zone under cavitation erosion-corrosion becomes most rapid, and stress intensity factor $K_1$becomes most high. 2) Stress corrosion cracking growth mechanism by cavitation erosion-corrosion is judgement on the strength of the film rupture model and the tunnel model. 3) The range of potential as passivation of heat affected zone is less noble than that of base metal, and that value is smaller. 4) Corrosion potential under cavitation erosion-corrosion in loaded stress is less noble than that of stress corrosion, and corrosion current density is higher.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.