• Title/Summary/Keyword: intensity estimation

Search Result 619, Processing Time 0.034 seconds

Probabilistic earthquake risk consideration of existing precast industrial buildings through loss curves

  • Ali Yesilyurt;Seyhan O. Akcan;Oguzhan Cetindemir;A. Can Zulfikar
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.565-576
    • /
    • 2024
  • In this study, the earthquake risk assessment of single-story RC precast buildings in Turkey was carried out using loss curves. In this regard, Kocaeli, a seismically active city in the Marmara region, and this building class, which is preferred intensively, were considered. Quality and period parameters were defined based on structural and geometric properties. Depending on these parameters, nine main sub-classes were defined to represent the building stock in the region. First, considering the mean fragility curves and four different central damage ratio models, vulnerability curves for each sub-class were computed as a function of spectral acceleration. Then, probabilistic seismic hazard analyses were performed for stiff and soft soil conditions for different earthquake probabilities of exceedance in 50 years. In the last step, 90 loss curves were derived based on vulnerability and hazard results. Within the scope of the study, the comparative parametric evaluations for three different earthquake intensity levels showed that the structural damage ratio values for nine sub-classes changed significantly. In addition, the quality parameter was found to be more effective on a structure's damage state than the period parameter. It is evident that since loss curves allow direct loss ratio calculation for any hazard level without needing seismic hazard and damage analysis, they are considered essential tools in rapid earthquake risk estimation and mitigation initiatives.

EMP shielding of mortar mixed with SiC and graphite

  • Oh-Seong Park;Hyeong-Kyu Cho
    • Journal of Ceramic Processing Research
    • /
    • v.23 no.2
    • /
    • pp.165-170
    • /
    • 2022
  • Using electromagnetic shielding technology, the exterior walls of buildings can prevent the penetration of electromagnetic waves. This effectively reduces the electromagnetic field intensity and electromagnetic pulse inside buildings. Therefore, in recent years, researchers have focused on developing electromagnetic shielding technology. In this study, we analyzed the physical properties and EMP shielding efficiency of shielding materials, such as silicon carbide (SiC), obtained as a byproduct of the semiconductor manufacturing processes, and graphite mixed with mortar, used in the external walls. The shielding materials underwent pretreatment, such as grinding, before mixing them with mortar. Because shielding materials are expensive, the shielding efficiency was calculated by mixing the respective shielding materials with mortar in only the outermost 10% of the sample mortar volume. Moreover, we calculated the shielding efficiency of the different samples of mortar with shielding materials throughout the volume of the samples using shielding effectiveness (SE) estimation formula. The predicted SE values of the samples of mortar mixed with granular SiC, graphite powder, and SiC powder were 20 dB, 18 dB, and 28 dB, respectively. The SE of the sample of mortar mixed with SiC powder is approximately equal to 30 dB, that is, the maximum shielding efficiency (99.9%).

Machine learning-based evaluation technology of 3D spatial distribution of residual radioactivity in large-scale radioactive structures

  • UkJae Lee;Phillip Chang;Nam-Suk Jung;Jonghun Jang;Jimin Lee;Hee-Seock Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3199-3209
    • /
    • 2024
  • During the decommissioning of nuclear and particle accelerator facilities, a considerable amount of large-scale radioactive waste may be generated. Accurately defining the activation level of the waste is crucial for proper disposal. However, directly measuring the internal radioactivity distribution poses challenges. This study introduced a novel technology employing machine learning to assess the internal radioactivity distribution based on external measurements. Random radioactivity distribution within a structure were established, and the photon spectrum measured by detectors from outside the structure was simulated using the FLUKA Monte-Carlo code. Through training with spectrum data corresponding to various radioactivity distributions, an evaluation model for radioactivity using simulated data was developed by above Monte-Carlo simulation. Convolutional Neural Network and Transformer methods were utilized to establish the evaluation model. The machine learning construction involves 5425 simulation datasets, and 603 datasets, which were used to obtain the evaluated results. Preprocessing was applied to the datasets, but the evaluation model using raw spectrum data showed the best evaluation results. The estimation of the intensity and shape of the radioactivity distribution inside the structure was achieved with a relative error of 10%. Additionally, the evaluation based on the constructed model takes only a few seconds to complete the process.

Spatial Rainfall Considering Elevation and Estimation of Rain Erosivity Factor R in Revised USLE Using 1 Minute Rainfall Data and Program Development (고도를 고려한 공간강우분포와 1분 강우자료를 이용한 RUSLE의 강우침식인자(R) 산정 및 프로그램 개발)

  • JUNG, Chung-Gil;JANG, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.130-145
    • /
    • 2016
  • Soil erosion processes are affected by weather factors, such as rainfall, temperature, wind, and humidity. Among these factors, rainfall directly influences soil erosion by breaking away soil particles. The kinetic energy of rainfall and water flow caused by rain entrains and transports soil particles downstream. Therefore, in order to estimate soil erosion, it is important to accurately determine the rainfall erosivity factor(R) in RUSLE(Revised Universal Soil Loss Equation). The objective of this study is to evaluate the average annual R using 14 years(2002~2015) of 1 minute rainfall data from 55 KMA(Korea Meteorological Administration) weather stations. The R results from 1 min rainfall were compared with previous R studies using 1 h rainfall data. The determination coefficients($R^2$) between R calculated using 1 min rainfall data and annual rainfall were 0.70-0.98. The estimation of 30 min rainfall intensity from 1 min rainfall data showed better $R^2$ results than results from 1 h rainfall data. For estimation of physical spatial rain erosivity(R), distribution of annual rainfall was estimated by IDW(Inverse Distance Weights) interpolation, taking elevation into consideration. Because of the computation burden, the R calculation process was programmed using the python GUI(Graphical User Interface) tool.

Estimation of Travel Time in Natural River and Dam Outflow Conditions Considering Rainfall Conditions and Soil Moisture Accounting (강우조건과 토양함수상태를 고려한 자연하천과 댐 방류량 조건에서의 도달시간 산정)

  • Kim, Dong Phil;Kim, Kyoung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.537-545
    • /
    • 2018
  • Determination of the time parameters such as the travel time in the design flood is very important. The travel time is mainly used for flood and river management, and the travel time of non flood season is used for maintenance flow and management of the river. Estimation of travel time for natural rivers is mainly based on the geomorphological factors of the basin. In addition to the topographical factors, the travel time is calculated by considering the factors of the runoff curve, velocity and rainfall intensity. However, there is no study on the estimation of travel time considering both the rainfall condition and the soil moisture accounting by the frequency period. Therefore, the travel time calculation is divided into the case of setting the Hwanggang Dam and the Imjin bridge water level station of Imjin river as the natural river considering rainfall condition by the frequency period and the soil moisture accounting, and the case of traveling the Imjin bridge water level station according to the condition of outflow of the Hwanggang Dam. For the sections set as natural rivers, the results were verified by comparing with the newly developed travel time calculation method. Based on the results, the travel times of the Hwanggang Dam outflow conditions were calculated. The time to travel in this study can be secured flood control of the Imjin river basin and time to prepare for danger when outflowing the the Hwanggang Dam.

Estimation of Fire Emissions Using Fire Radiative Power (FRP) Retrieved from Himawari-8 Satellite (히마와리 위성의 산불방사열에너지 자료를 이용한 산불배출가스 추정: 2017년 삼척 및 강릉 산불을 사례로)

  • Kim, Deasun;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1029-1040
    • /
    • 2017
  • Wildfires release a large amount of greenhouse gases (GHGs) into the atmosphere. Fire radiative power (FRP) data obtained from geostationary satellites can play an important role for tracing the GHGs. This paper describes an estimation of the Himawari-8 FRP and fire emissions for Samcheock and Gangnueng wildfire in 6 May 2017. The FRP estimated using Himawari-8 well represented the temporal variability of the fire intensity, which cannot be captured by MODIS (Moderate Resolution Imaging Spectroradiometer) because of its limited temporal resolution. Fire emissions calculated from the Himwari-8 FRP showed a very similar time-series pattern compared with the AirKorea observations, but 1 to 3 hour's time-lag existed because of the distance between the station and the wildfire location. The estimated emissions were also compared with those of a previous study which analyzed fire damages using high-resolution images. They almost coincided with 12% difference for Samcheock and 2% difference for Gangneung, demonstrating a reliability of the estimation of fire emissions using our Himawari-8 FRP without high-resolution images. This study can be a reference for estimating fire emissions using the current and forthcoming geostationary satellites in East Asia and can contribute to improving accuracy of meteorological products such as AOD (aerosol optical depth).

An Analysis on Evaluation of Construction Technology Value for Supporting Mid-small Construction Enterprises Pursuing Technical Innovation (기술기반 중소건설업체 지원을 위한 건설기술가치 평가 연구)

  • Kim, Myeongsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.4
    • /
    • pp.27-35
    • /
    • 2017
  • Based on Income-approach, this study develops the evaluation model which reflects construction industry's traits. Using Income approach, we derive future income's present value and evaluates the technological value by contribution to future income. As there exist more random variables in construction technology than in standardized manufactured products, we cannot help relying on not only quantitative estimation method but also qualitative evaluation by technology and market experts when we estimates construction technology value. Also, conservative estimation is needed for discount rate and cash-flow estimation, because of high uncertainty in sales and profits in construction industry. In empirical analysis, we applied economic periods of duration and cash-flow based on the standard guideline, and analyzed discount rate and technology factor based on characteristics of construction industry. The discount rate is estimated to 15% because of risk-premium increase by conservative evaluation. Technology factor is estimated to 46.7%, because technological intensity is estimated to 72% by technological superiority. Such implications can be inferred. Firstly, we need to build a database to diversify categories for division of sectors by activity or industrial classification which is now categorized only by two sectors in standard guideline. Secondly, the roles of experts who participate in technology evaluation are important because of volatility of construction technology.

The Estimation of Selection Response for Growth Traits in 31-month Old of Pacific abalone, Haliotis discus hannai (31개월령 북방전복, Haliotis discus hannai의 성장형질에 대한 선발반응 추정)

  • Park, Jong-Won;Park, Choul-Ji;Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Hwang, In-Joon;Kim, Sung-Yeon
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.335-342
    • /
    • 2012
  • This study was conducted to estimation the selection response for growth-related traits in 31-month old of Pacific abalone, Haliotis discus hannai were born in 2008. In overall mean of surveyed traits and standard deviation showed $76.31{\pm}7.247$ mm of shell length, $49.48{\pm}5.307$ mm of shell width and $40.96{\pm}6.80$ g of total weight. The effect of sex and maturity were statistically significant in all traits include out a condition factor (p < 0.01). And In effect of sex, female were higher than male in all traits excepting condition factor, significantly. In correlation between breeding value and phenotypic value by each traits, showed rank correlation coefficient and simple correlation coefficient, which represented low positive correlation. A hopeful genetic improvement to the next generation showed 6.96 mm of shell length, 4.47 mm of shel width and 12.93 g of total weight. Therefor, It is considered that if considering properly selection intensity and selection ratio, efficient improvement could be made.

Correlation between Antioxidant Capacities and Color Values in Korean Red Grape Juices (국내 적포도주스의 항산화능과 색도의 상관성)

  • Kim, Joo-Young;Seong, Gi-Un;Hwang, In-Wook;Chung, Shin-Kyo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1206-1211
    • /
    • 2015
  • Grape juice is consumed worldwide and studied due to the high antioxidant activities and contents. The color of grape juice is due to the presence of phenolic compounds such as anthocyanins. Therefore, color values can be an indicator of antioxidant capacities of grape juice. However, the correlation between color values and antioxidant activities in grape juice has not been well studied. In this study, the physicochemical characteristics and correlation between color values and antioxidant capacities of Korean red grape juices (five commercial juices from market and two juices prepared in the laboratory) were investigated to estimate antioxidant capacities. Antioxidant capacities were determined by 1,1-diphenlyl-2-picrylhydrazyl radical scavenging assay, ferric ion reducing antioxidant power assay, and oxygen radical absorbance capacity assay. Total phenolic contents, total flavonoid contents, and total anthocyanin contents, including five kinds of polyphenolic compounds, were examined by high performance liquid chromatography (HPLC). The results for physicochemical properties showed similar values, except titratable acidity. The color hue values of the prepared juices were higher than those of commercial juices, which was in contrast to the lower color intensity values (P<0.05). The Hunter L, a, and b values showed almost no difference between commercial and prepared juices. The antioxidant activities and total phenolic contents of commercial juices were higher than those of prepared ones. Gallic acid, catechin, and quercetin were confirmed by HPLC in all samples. The total phenolic and total flavonoid contents showed positive correlation with antioxidant activities. In addition, antioxidant activities and contents correlated with color values. Thus, estimation of antioxidant capacity could be feasible through the spectrophotometric measurement of color values.

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.