• Title/Summary/Keyword: intelligent video surveillance

Search Result 125, Processing Time 0.028 seconds

A Study on Swarm Robot-Based Invader-Enclosing Technique on Multiple Distributed Object Environments

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.806-816
    • /
    • 2011
  • Interest about social security has recently increased in favor of safety for infrastructure. In addition, advances in computer vision and pattern recognition research are leading to video-based surveillance systems with improved scene analysis capabilities. However, such video surveillance systems, which are controlled by human operators, cannot actively cope with dynamic and anomalous events, such as having an invader in the corporate, commercial, or public sectors. For this reason, intelligent surveillance systems are increasingly needed to provide active social security services. In this study, we propose a core technique for intelligent surveillance system that is based on swarm robot technology. We present techniques for invader enclosing using swarm robots based on multiple distributed object environment. The proposed methods are composed of three main stages: location estimation of the object, specified object tracking, and decision of the cooperative behavior of the swarm robots. By using particle filter, object tracking and location estimation procedures are performed and a specified enclosing point for the swarm robots is located on the interactive positions in their coordinate system. Furthermore, the cooperative behaviors of the swarm robots are determined via the result of path navigation based on the combination of potential field and wall-following methods. The results of each stage are combined into the swarm robot-based invader-enclosing technique on multiple distributed object environments. Finally, several simulation results are provided to further discuss and verify the accuracy and effectiveness of the proposed techniques.

Indoor Surveillance Camera based Human Centric Lighting Control for Smart Building Lighting Management

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Lee, Min Woo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.207-212
    • /
    • 2020
  • The human centric lighting (HCL) control is a major focus point of the smart lighting system design to provide energy efficient and people mood rhythmic motivation lighting in smart buildings. This paper proposes the HCL control using indoor surveillance camera to improve the human motivation and well-beings in the indoor environments like residential and industrial buildings. In this proposed approach, the indoor surveillance camera video streams are used to predict the day lights and occupancy, occupancy specific emotional features predictions using the advanced computer vision techniques, and this human centric features are transmitted to the smart building light management system. The smart building light management system connected with internet of things (IoT) featured lighting devices and controls the light illumination of the objective human specific lighting devices. The proposed concept experimental model implemented using RGB LED lighting devices connected with IoT features open-source controller in the network along with networked video surveillance solution. The experiment results are verified with custom made automatic lighting control demon application integrated with OpenCV framework based computer vision methods to predict the human centric features and based on the estimated features the lighting illumination level and colors are controlled automatically. The experiment results received from the demon system are analyzed and used for the real-time development of a lighting system control strategy.

A Background Subtraction Algorithm for Fence Monitoring Surveillance Systems (담장 감시 시스템을 위한 배경 제거 알고리즘)

  • Lee, Bok Ju;Chu, Yeon Ho;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.37-43
    • /
    • 2015
  • In this paper, a new background subtraction algorithm for video based fence monitoring surveillance systems is proposed. We adopt the sampling based background subtraction technique and focus on the two main issues: handling highly dynamic environment and handling the flickering nature of pulse based IR (infrared) lamp. Natural scenes from fence monitoring system are usually composed of several dynamic entities such as swaying trees, moving water, waves and rain. To deal with such dynamic backgrounds, we utilize the confidence factor for each background value of the input image. For the flickering IR lamp, the original sampling based technique is extended to handle double background models. Experimental results revealed that our method works well in real fence monitoring surveillance systems.

Efficient Swimmer Detection Algorithm using CNN-based SVM

  • Hong, Dasol;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.79-85
    • /
    • 2017
  • In this paper, we propose a CNN-based swimmer detection algorithm. Every year, water safety accidents have been occurred frequently, and accordingly, intelligent video surveillance systems are being developed to prevent accidents. Intelligent video surveillance system is a real-time system that detects objects which users want to do. It classifies or detects objects in real-time using algorithms such as GMM (Gaussian Mixture Model), HOG (Histogram of Oriented Gradients), and SVM (Support Vector Machine). However, HOG has a problem that it cannot accurately detect the swimmer in a complex and dynamic environment such as a beach. In other words, there are many false positives that detect swimmers as waves and false negatives that detect waves as swimmers. To solve this problem, in this paper, we propose a swimmer detection algorithm using CNN (Convolutional Neural Network), specialized for small object sizes, in order to detect dynamic objects and swimmers more accurately and efficiently in complex environment. The proposed CNN sets the size of the input image and the size of the filter used in the convolution operation according to the size of objects. In addition, the aspect ratio of the input is adjusted according to the ratio of detected objects. As a result, experimental results show that the proposed CNN-based swimmer detection method performs better than conventional techniques.

Crowd escape event detection based on Direction-Collectiveness Model

  • Wang, Mengdi;Chang, Faliang;Zhang, Youmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4355-4374
    • /
    • 2018
  • Crowd escape event detection has become one of the hottest problems in intelligent surveillance filed. When the 'escape event' occurs, pedestrians will escape in a disordered way with different velocities and directions. Based on these characteristics, this paper proposes a Direction-Collectiveness Model to detect escape event in crowd scenes. First, we extract a set of trajectories from video sequences by using generalized Kanade-Lucas-Tomasi key point tracker (gKLT). Second, a Direction-Collectiveness Model is built based on the randomness of velocity and orientation calculated from the trajectories to express the movement of the crowd. This model can describe the movement of the crowd adequately. To obtain a generalized crowd escape event detector, we adopt an adaptive threshold according to the Direction-Collectiveness index. Experiments conducted on two widely used datasets demonstrate that the proposed model can detect the escape events more effectively from dense crowd.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

A Study of Scenario and Trends in Intelligent Surveillance Camera (지능형 감시 카메라 동향 및 시나리오 연구)

  • Chang, Il-Sik;Cha, Hyun-Hee;Park, Goo-Man;Lee, Kwang-Jik;Kim, Seong-Kweon;Cha, Jae-Sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.93-101
    • /
    • 2009
  • As the industrial society is developing wars, terrors, and vicious crimes is getting increased. These dangerous factors are caused of casualty and subversiveness of social order. Such vicious crimes lead people to feeling of insecurity. That is why naturally people want to build and inspect strengthened security system. CCTV camera system which can be said as the most popular security system is being installed in public places has large number of floating population. This trend is required to develop the intelligent video security technology and propagate it since the importance of security technology is getting high. This thesis will be described regarding the trend of the intelligent surveillance camera and the scenario.

  • PDF

Detection of Crowd Escape Behavior in Surveillance Video (감시 영상에서 군중의 탈출 행동 검출)

  • Park, Junwook;Kwak, Sooyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.731-737
    • /
    • 2014
  • This paper presents abnormal behavior detection in crowd within surveillance video. We have defined below two cases as a abnormal behavior; first as a sporadically spread phenomenon and second as a sudden running in same direction. In order to detect these two abnormal behaviors, we first extract the motion vector and propose a new descriptor which is combined MHOF(Multi-scale Histogram of Optical Flow) and DCHOF(Directional Change Histogram of Optical Flow). Also, binary classifier SVM(Support Vector Machine) is used for detection. The accuracy of the proposed algorithm is evaluated by both UMN and PETS 2009 dataset and comparisons with the state-of-the-art method validate the advantages of our algorithm.

Design of Upper Body Detection System Using RBFNN Based on HOG Algorithm (HOG기반 RBFNN을 이용한 상반신 검출 시스템의 설계)

  • Kim, Sun-Hwan;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.259-266
    • /
    • 2016
  • Recently, CCTV cameras are emplaced actively to reinforce security and intelligent surveillance systems have been under development for detecting and monitoring of the objects in the video. In this study, we propose a method for detection of upper body in intelligent surveillance system using FCM-based RBFNN classifier realized with the aid of HOG features. Firstly, HOG features that have been originally proposed to detect the pedestrian are adopted to train the unique gradient features about upper body. However, HOG features typically exhibit a very high dimension of which is proportional to the size of the input image, it is necessary to reduce the dimension of inputs of the RBFNN classifier. Thus the well-known PCA algorithm is applied prior to the RBFNN classification step. In the computer simulation experiments, the RBFNN classifier was trained using pre-classified upper body images and non-person images and then the performance of the proposed classifier for upper body detection is evaluated by using test images and video sequences.

Object Tracking Framework of Video Surveillance System based on Non-overlapping Multi-camera (비겹침 다중 IP 카메라 기반 영상감시시스템의 객체추적 프레임워크)

  • Han, Min-Ho;Park, Su-Wan;Han, Jong-Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.141-152
    • /
    • 2011
  • Growing efforts and interests of security techniques in a diverse surveillance environment, the intelligent surveillance system, which is capable of automatically detecting and tracking target objects in multi-cameras environment, is actively developing in a security community. In this paper, we propose an effective visual surveillance system that is avaliable to track objects continuously in multiple non-overlapped cameras. The proposed object tracking scheme consists of object tracking module and tracking management module, which are based on hand-off scheme and protocol. The object tracking module, runs on IP camera, provides object tracking information generation, object tracking information distribution and similarity comparison function. On the other hand, the tracking management module, runs on video control server, provides realtime object tracking reception, object tracking information retrieval and IP camera control functions. The proposed object tracking scheme allows comprehensive framework that can be used in a diverse range of application, because it doesn't rely on the particular surveillance system or object tracking techniques.