• Title/Summary/Keyword: intelligent mobile robot

Search Result 457, Processing Time 0.02 seconds

Simultaneous Localization and Mapping of Mobile Robot using Digital Magnetic Compass and Ultrasonic Sensors (전자 나침반과 초음파 센서를 이용한 이동 로봇의 Simultaneous Localization and Mapping)

  • Kim, Ho-Deok;Lee, Hae-Gang;Seo, Sang-Uk;Jang, In-Hun;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.37-40
    • /
    • 2007
  • Digital Magnetic Compass(DMC)는 실내의 전자기적 요소나 강한 자성체 건물구조에서는 쉽게 방해를 받던 Compass보다 실내에서 간섭에 강한 특징을 가지고 있다. 그리고 적외선 센서와 초음파 센서는 서로 물체와의 거리를 보완적으로 계산해 줄뿐만 아니라 값싼 센서로서 경제적인 이점을 가지고 있어 Simultaneous Localization and Mapping(SLAM)에서 많이 사용하고 있다. 본 논문에서는 자율 이동 로봇의 구동에서 Digital Magnetic Compass(DMC)와 Ultrasonic Sensors을 이용한 SLAM의 구현에 대해 연구하였다. 로봇의 특성상 한정된 Sensing 데이터만으로 방향과 위치를 파악하고 그 데이터 값으로 가능한 빠르게 Localization을 하여야 한다. 그러므로 자율 이동 로봇에서의 SLAM 적용함으로 Localization 구현과 Mapping을 수행하고 SLAM 구현상의 주된 연구 중의 하나인 Kid Napping 문제에 중점을 두고 연구한다. 특히, Localization 구현을 수행을 위한 데이터의 Sensing 방법으로 적외선 센서와 초음파 센서를 같이 사용하였고 비슷한 위치의 데이터 값이 주어지거나 사전 정보 없는 상태에서는 로봇의 상태를 파악하기 위해서 DMC을 같이 사용하여 더 정확한 위치를 측정에 활용하였다.

  • PDF

Development of PSD Sensor Based Distance Measuring System Using Linearizing Function of Voltage-Distance Conversion (선형화 전압-거리 변환함수를 이용한 PSD 센서기반 거리계측시스템의 개발)

  • Kim Yu-Chan;Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.668-672
    • /
    • 2005
  • In this paper, a distance measuring system using a PSD sensor in proposed, which in suitable for low-cost localization sensor of a mobile robot. Because the distance-voltage output of PSD sensor has a non-linear property, the linearizing function is proposed through the experimental characteristics of the sensor. And the characteristics are tested and the distance-voltage data are measured in various colors and materials of object. The parameters of the proposed function are extracted by using the measured data. Finally, the performance and the accuracy of the developed system are verified according to the comparison of the distance by the proposed function with the real distance.

Neuro-Fuzzy Controller Based on Reinforcement Learning (강화 학습에 기반한 뉴로-퍼지 제어기)

  • 박영철;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.395-400
    • /
    • 2000
  • In this paper, we propose a new neuro-fuzzy controller based on reinforcement learning. The proposed system is composed of neuro-fuzzy controller which decides the behaviors of an agent, and dynamic recurrent neural networks(DRNNs) which criticise the result of the behaviors. Neuro-fuzzy controller is learned by reinforcement learning. Also, DRNNs are evolved by genetic algorithms and make internal reinforcement signal based on external reinforcement signal from environments and internal states. This output(internal reinforcement signal) is used as a teaching signal of neuro-fuzzy controller and keeps the controller on learning. The proposed system will be applied to controller optimization and adaptation with unknown environment. In order to verifY the effectiveness of the proposed system, it is applied to collision avoidance of an autonomous mobile robot on computer simulation.

  • PDF

Design of Autonomous Navigation Systems based on Wireless Networks (무선 네트워크 기반 자율주행 시스템 설계)

  • Park, Hye-G.;Lee, Hyong-G.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.435-440
    • /
    • 2012
  • Recently autonomous navigation systems are taken great attention in real industry. The ability to performing desired tasks in rough, changing, unstructured and uncertain environments without continuous human assistance is needed in autonomous navigation systems including autonomous robots. Industrial Mobile robot can be required wireless network communications for the purpose of navigation information sharing. According to these backgrounds, in this paper, we develop sensor network and wireless network-based autonomous navigation systems, and provide experimental results in order to show the validity of the developed systems.

Emotion Recognition Based on Human Gesture (인간의 제스쳐에 의한 감정 인식)

  • Song, Min-Kook;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • This paper is to present gesture analysis for human-robot interaction. Understanding human emotions through gesture is one of the necessary skills fo the computers to interact intelligently with their human counterparts. Gesture analysis is consisted of several processes such as detecting of hand, extracting feature, and recognizing emotions. For efficient operation we used recognizing a gesture with HMM(Hidden Markov Model). We constructed a large gesture database, with which we verified our method. As a result, our method is successfully included and operated in a mobile system.

Strategy of Object Search for Distributed Autonomous Robotic Systems

  • Kim Ho-Duck;Yoon Han-Ul;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.264-269
    • /
    • 2006
  • This paper presents the strategy for searching a hidden object in an unknown area for using by multiple distributed autonomous robotic systems (DARS). To search the target in Markovian space, DARS should recognize th ε ir surrounding at where they are located and generate some rules to act upon by themselves. First of all, DARS obtain 6-distances from itself to environment by infrared sensor which are hexagonally allocated around itself. Second, it calculates 6-areas with those distances then take an action, i.e., turn and move toward where the widest space will be guaranteed. After the action is taken, the value of Q will be updated by relative formula at the state. We set up an experimental environment with five small mobile robots, obstacles, and a target object, and tried to research for a target object while navigating in a un known hallway where some obstacles were placed. In the end of this paper, we present the results of three algorithms - a random search, an area-based action making process to determine the next action of the robot and hexagon-based Q-learning to enhance the area-based action making process.

Vision Sensor-Based Driving Algorithm for Indoor Automatic Guided Vehicles

  • Quan, Nguyen Van;Eum, Hyuk-Min;Lee, Jeisung;Hyun, Chang-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.140-146
    • /
    • 2013
  • In this paper, we describe a vision sensor-based driving algorithm for indoor automatic guided vehicles (AGVs) that facilitates a path tracking task using two mono cameras for navigation. One camera is mounted on vehicle to observe the environment and to detect markers in front of the vehicle. The other camera is attached so the view is perpendicular to the floor, which compensates for the distance between the wheels and markers. The angle and distance from the center of the two wheels to the center of marker are also obtained using these two cameras. We propose five movement patterns for AGVs to guarantee smooth performance during path tracking: starting, moving straight, pre-turning, left/right turning, and stopping. This driving algorithm based on two vision sensors gives greater flexibility to AGVs, including easy layout change, autonomy, and even economy. The algorithm was validated in an experiment using a two-wheeled mobile robot.

A Study on Fisheye Lens based Features on the Ceiling for Self-Localization (실내 환경에서 자기위치 인식을 위한 어안렌즈 기반의 천장의 특징점 모델 연구)

  • Choi, Chul-Hee;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.442-448
    • /
    • 2011
  • There are many research results about a self-localization technique of mobile robot. In this paper we present a self-localization technique based on the features of ceiling vision using a fisheye lens. The features obtained by SIFT(Scale Invariant Feature Transform) can be used to be matched between the previous image and the current image and then its optimal function is derived. The fisheye lens causes some distortion on its images naturally. So it must be calibrated by some algorithm. We here propose some methods for calibration of distorted images and design of a geometric fitness model. The proposed method is applied to laboratory and aile environment. We show its feasibility at some indoor environment.

A New Path Control Algorithm for Underwater Robots Using Fuzzy Logic (퍼지 로직을 이용한 수중 로봇의 새로운 경로 제어 알고리즘)

  • Kwon, Kyoung-Youb;Joung, Tae-Whee;Jo, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.498-504
    • /
    • 2005
  • A fuzzy logic for collision avoidance of underwater robots is proposed in this paper. The VFF(Virtual Force Field) method, which is widely used in the field of mobile robots, is modified for application to the autonomous navigation of underwater robots. This Modified Virtual Force Field(MVFF) method using the fuzzy logic can be used in either track keeping or obstacle avoidance. Fuzzy logics are devised to handle various situations which can be faced during autonomous navigation of underwater robots. The obstacle avoidance algorithm has the ability to handle multiple static obstacles. Results of simulation show that the proposed method can be efficiently applied to obstacle avoidance of the underwater robots.

Path Planning Method Using the the Particle Swarm Optimization and the Improved Dijkstra Algorithm (입자 군집 최적화와 개선된 Dijkstra 알고리즘을 이용한 경로 계획 기법)

  • Kang, Hwan-Il;Lee, Byung-Hee;Jang, Woo-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.212-215
    • /
    • 2008
  • In this paper, we develop the optimal path planning algorithm using the improved Dijkstra algorithm and the particle swarm optimization. To get the optimal path, at first we construct the MAKLINK on the world environment and then make a graph associated with the MAKLINK. The MAKLINK is a set of edges which consist of the convex set. Some of the edges come from the edges of the obstacles. From the graph, we obtain the Dijkstra path between the starting point and the destination point. From the optimal path, we search the improved Dijkstra path using the graph. Finally, applying the particle swarm optimization to the improved Dijkstra path, we obtain the optimal path for the mobile robot. It turns out that the proposed method has better performance than the result in [1] through the experiment.