• Title/Summary/Keyword: intelligent mobile robot

Search Result 457, Processing Time 0.035 seconds

Human Centered Robot for Mutual Interaction in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.246-252
    • /
    • 2005
  • Intelligent Space is a space where many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents, which provide human with services. To realize this, human and mobile robots have to approach each other as much as possible. Moreover, it is necessary for them to perform interactions naturally. It is desirable for a mobile robot to carry out human affinitive movement. In this research, a mobile robot is controlled by the Intelligent Space through its resources. The mobile robot is controlled to follow walking human as stably and precisely as possible. In order to follow a human, control law is derived from the assumption that a human and a mobile robot are connected with a virtual spring model. Input velocity to a mobile robot is generated on the basis of the elastic force from the virtual spring in this model. And its performance is verified by the computer simulation and the experiment.

A Concept Model Design of a Home Automation System Using Intelligent Mobile Robot (지능형 이동 로봇을 이용한 홈오토메이션 시스템 모델 제안 및 구현)

  • Ahn Ho Seok;Choi Jin Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.221-224
    • /
    • 2005
  • This paper proposes the system model that is more efficient and active than formal home automation system and it can conquer the limits of formal one using intelligent mobile robot. This system uses specialized intelligent mobile robot for home environment and the robot moves around home instead of human. We call the system model to HAuPIRS (Home Automation system using PDA based Intelligent Robot System). HAuPIRS control architecture is composed three parts and each part is User Level, Cognitive Level, Executive Level. It is easy to use system and possible to extend the home apparatusfrom new technology. We made the PBMoRo System (PDA Based Mobile Robot System) based on HAuPIRS architecture and verified the efficiency of the system model.

  • PDF

Home Automation System using Intelligent Mobile Robot (지능형 이동 로봇을 이용한 홈오토메이션 시스템)

  • Ahn, Ho-Seok;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.486-491
    • /
    • 2005
  • This paper proposes the system model that is more efficient and active than formal home automation system and it can conquer the limits of formal one using intelligent mobile robot. This system uses specialized intelligent mobile robot for home environment and the robot moves around home instead of human. We call the system model to HAuPIRS (Home Automation system using PDA based Intelligent Robot System). HAuPIRS control architecture is composed three parts and each part is User Level, Cognitive Level, Executive Level. It is easy to use system and possible to extend the home apparatus from new technology. We made the PBMoRo System (PDA Based Mobile Robot System) based on HAuPIRS architecture and verified the efficiency of the system model.

Mobile Robot Control for Human Following in Intelligent Space

  • Kazuyuki Morioka;Lee, Joo-Ho;Zhimin Lin;Hideki Hashimoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.1-25
    • /
    • 2001
  • Intelligent Space is a space where many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents, which provide human with services. To realize this, human and mobile robots have to approach each other as much as possible. Moreover, it is necessary for them to perform interactions naturally. Thus, it is desirable for a mobile robot to carry out human-affnitive movement. In this research, a mobile robot is controlled by the Intelligent Space through its resources. The mobile robot is controlled to follow walking human as stably and precisely as possible.

  • PDF

Optimal Configuration Control for a Mobile Manipulator

  • Kang, Jin-Gu;Jin, Tae-Seok;Kim, Min-Gyu;Lee, Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.605-621
    • /
    • 2000
  • A mobile manipulator-a serial connection of a mobile platform and a task robot-is redundant by itself. Using its redundant freedom, a mobile manipulator can move in various modes, i. e., can perform dexterous tasks. In this paper, to improve task execution efficiency utilizing redundancy, optimal configurations of the mobile manipulator are maintained while it is moving to a new task point. Assuming that a task robot can perform the new task by itself, a desired configuration for the task robot can be pre-determined. Therefore, a cost function for optimality can be defined as a combination of the square errors of the desired and actual configurations of the mobile platform and of the task robot. In the combination of the two square errors, a newly defined mobility of a mobile platform is utilized as a weighting index. With the aid of the gradient method, the cost function is minimized, so the tasle that the mobile manipulator performs is optimized. The proposed algorithm is experimentally verified and discussed with a mobile manipulator, PURL-II.

  • PDF

Control of Mobile Robot Using Voice Recognition and Wearable Module (음성인식과 웨어러블 모듈을 이용한 이동로봇 제어)

  • 정성호;서재용;김용민;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.37-40
    • /
    • 2002
  • Intelligent Wearable Module is intelligent system that arises when a human is part of the feedback loop of a computational process like a certain control system. Applied system is mobile robot. This paper represents the mobile robot control system remote controlled by Intelligent Wearable Module. So far, owing to the development of internet technologies, lots of remote control methods through internet have been proposed. To control a mobile robot through internet and guide it under unknown environment, We propose a control method activated by Intelligent Wearable Module. In a proposed system, PDA acts as a user interface to communicate with notebook as a controller of the mobile robot system using TCP/IP protocol, and the notebook controls the mobile robot system. Tlle information about the direction and velocity of the mobile robot feedbacks to the PDA and the PDA send new control method produced from the fuzzy inference engine.

  • PDF

Development of Intelligent Mobile Robot with electronic nose

  • Byun, Hyung-Gi;Ham, Yu-Kyung;Kim, Jung-Do;Park, Ji-Hyeok;Shon, Won-Ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.137.2-137
    • /
    • 2001
  • We have been developed an intelligent mobile robot with an artificial olfactory function to recognize odours and to track odour source location. This mobile robot also has been installed an engine for speech recognition and synthesis, and is controlled by wireless communication. An artificial olfactory system based on array of 7 gas sensors has been installed in the mobile robot for odour recognition, and 11 gas sensors also are located in the bottom of robot to track odour sources. 3 optical sensors are also included in the intelligent mobile robot, which is driven by 2 D.C. motors, for clash avoidance in a way of direction toward an odour source. Throughout the experimental trails, it is confirmed that the intelligent mobile robot is capable of not only the odour recognition using artificial neural network algorithm, but also the tracking odour source using the step-by-step approach method ...

  • PDF

The Trace Algorithm of Mobile Robot Using Neural Network (신경 회로망을 이용한 Mobile Robot의 추종 알고리즘)

  • 남선진;김성현;김성주;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.267-270
    • /
    • 2001
  • In this paper, we propose the self-autonomous algorithm for mobile robot system. The proposed mobile robot system which is teamed by learning with the neural networks can trace the target at the same distances. The mobile robot can evaluate the distance between robot and target with ultrasonic sensors. By teaming the setup distance, current distance and command velocity, the robot can do intelligent self-autonomous drive. We use the neural network and back-propagation algorithm as a tool of learning. As a result, we confirm the ability of tracing the target with proposed mobile robot.

  • PDF

Human-Tracking Behavior of Mobile Robot Using Multi-Camera System in a Networked ISpace (공간지능화에서 다중카메라를 이용한 이동로봇의 인간추적행위)

  • Jin, Tae-Seok;Hashimoto, Hideki
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.310-316
    • /
    • 2007
  • The paper proposes a human-following behavior of mobile robot and an intelligent space (ISpace) is used in order to achieve these goals. An ISpace is a 3-D environment in which many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents providing humans with services. A mobile robot is controlled to track a walking human using distributed intelligent sensors as stably and precisely as possible. The moving objects is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to track the walking human, the linear and angular velocities are estimated and utilized. The computer simulation and experimental results of estimating and trackinging of the walking human with the mobile robot are presented.

  • PDF

Intelligent Robot Control using Personal Digital Assistants

  • Jaeyong Seo;Kim, Seongjoo;Kim, Yongtaek;Hongtae Jeon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.304-306
    • /
    • 2003
  • In this paper, we propose the intelligent robot control technique for mobile robot using personal digital assistants (PDA). With the proposed technique, the mobile rebot can trace human at regular intervals by the remote control method with PDA. The mobile robot can recognize the distances between it and human whom the robot must follow with both multi-ultrasonic sensors and PC-camera and then, can inference the direction and velocity of itself to keep the given regular distances. In the first place, the mobile robot acquires the information about circumstances using ultrasonic sensor and PC-camera then secondly, transmits the data to PDA using wireless LAN communication. Finally, PDA recognizes the status of circumstances using the fuzzy logic and neural network and gives the command to mobile robot again.

  • PDF