• Title/Summary/Keyword: intelligent information technology(Artificial Intelligence, AI)

Search Result 84, Processing Time 0.022 seconds

Multi-Category Sentiment Analysis for Social Opinion Related to Artificial Intelligence on Social Media (소셜 미디어 상에서의 인공지능 관련 사회적 여론에 대한 다 범주 감성 분석)

  • Lee, Sang Won;Choi, Chang Wook;Kim, Dong Sung;Yeo, Woon Young;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.51-66
    • /
    • 2018
  • As AI (Artificial Intelligence) technologies have been swiftly evolved, a lot of products and services are under development in various fields for better users' experience. On this technology advance, negative effects of AI technologies also have been discussed actively while there exists positive expectation on them at the same time. For instance, many social issues such as trolley dilemma and system security issues are being debated, whereas autonomous vehicles based on artificial intelligence have had attention in terms of stability increase. Therefore, it needs to check and analyse major social issues on artificial intelligence for their development and societal acceptance. In this paper, multi-categorical sentiment analysis is conducted over online public opinion on artificial intelligence after identifying the trending topics related to artificial intelligence for two years from January 2016 to December 2017, which include the event, match between Lee Sedol and AlphaGo. Using the largest web portal in South Korea, online news, news headlines and news comments were crawled. Considering the importance of trending topics, online public opinion was analysed into seven multiple sentimental categories comprised of anger, dislike, fear, happiness, neutrality, sadness, and surprise by topics, not only two simple positive or negative sentiment. As a result, it was found that the top sentiment is "happiness" in most events and yet sentiments on each keyword are different. In addition, when the research period was divided into four periods, the first half of 2016, the second half of the year, the first half of 2017, and the second half of the year, it is confirmed that the sentiment of 'anger' decreases as goes by time. Based on the results of this analysis, it is possible to grasp various topics and trends currently discussed on artificial intelligence, and it can be used to prepare countermeasures. We hope that we can improve to measure public opinion more precisely in the future by integrating empathy level of news comments.

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

Remote Multi-control Smart Farm with Deep Learning Growth Diagnosis Function

  • Kim, Mi-jin;Kim, Ji-ho;Lee, Dong-hyeon;Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.49-57
    • /
    • 2022
  • Currently, the problem of food shortage is emerging in our society due to climate problems and an increase population in the world. As a solution to this problem, we propose a multi-remote control smart farm that combines artificial intelligence (AI) and information and communication technology (ICT) technologies. The proposed smart farm integrates ICT technology to remotely control and manage crops without restrictions in space and time, and to multi-control the growing environment of crops. In addition, using Arduino and deep-learning technology, a smart farm capable of multiple control through a smart-phone application (APP) was proposed, and Ai technology with various data securing and diagnosis functions while observing crop growth in real-time was included. Various sensors in the smart farm are controlled by using the Arduino, and the data values of the sensors are stored in the built database, so that the user can check the stored data with the APP. For multiple control for multiple crops, each LED, COOLING FAN, and WATER PUMP for two or more growing environments were applied so that the user could control it conveniently. And by implementing an APP that diagnoses the growth stage through the Tensor-Flow framework using deep-learning technology, we developed an application that helps users to easily diagnose the growth status of the current crop.

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-Suk;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1130-1135
    • /
    • 2022
  • In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office has built a control center for CCTV control and is performing 24-hour CCTV video control for the safety of citizens. Seoul Metropolitan Government is building a smart city integrated platform that is safe for citizens by providing CCTV images of the ward office to enable rapid response to emergency/emergency situations by signing an MOU with related organizations. In this paper, when an incident occurs at the Seoul Metropolitan Government Office, the escape route is predicted by discriminating people and vehicles using the AI DNN-based Template Matching technology, MLP algorithm and CNN-based YOLO SPP DNN model for CCTV images. In addition, it is designed to automatically disseminate image information and situation information to adjacent ward offices when vehicles and people escape from the competent ward office. The escape route prediction and tracking system using artificial intelligence can expand the smart city integrated platform nationwide.

Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis (디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링)

  • An, Sehwan;Ko, Kangwook;Kim, Youngmin
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.129-152
    • /
    • 2022
  • As a key infrastructure for digital transformation, the spread of data, network, artificial intelligence (D.N.A.) fields and the emergence of promising industries are laying the groundwork for active digital innovation throughout the economy. In this study, by applying the text mining methodology, major topics were derived by using the abstract, publication year, and research field of the study corresponding to the SCIE, SSCI, and A&HCI indexes of the WoS database as input variables. First, main keywords were identified through TF and TF-IDF analysis based on word appearance frequency, and then topic modeling was performed using g-DMR. With the advantage of the topic model that can utilize various types of variables as meta information, it was possible to properly explore the meaning beyond simply deriving a topic. According to the analysis results, topics such as business intelligence, manufacturing production systems, service value creation, telemedicine, and digital education were identified as major research topics in digital transformation. To summarize the results of topic modeling, 1) research on business intelligence has been actively conducted in all areas after COVID-19, and 2) issues such as intelligent manufacturing solutions and metaverses have emerged in the manufacturing field. It has been confirmed that the topic of production systems is receiving attention once again. Finally, 3) Although the topic itself can be viewed separately in terms of technology and service, it was found that it is undesirable to interpret it separately because a number of studies comprehensively deal with various services applied by combining the relevant technologies.

The Management of Smart Safety Houses Using The Deep Learning (딥러닝을 이용한 스마트 안전 축사 관리 방안)

  • Hong, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.505-507
    • /
    • 2021
  • Image recognition technology is a technology that recognizes an image object by using the generated feature descriptor and generates object feature points and feature descriptors that can compensate for the shape of the object to be recognized based on artificial intelligence technology, environmental changes around the object, and the deterioration of recognition ability by object rotation. The purpose of the present invention is to implement a power management framework required to increase profits and minimize damage to livestock farmers by preventing accidents that may occur due to the improvement of efficiency of the use of livestock house power and overloading of electricity by integrating and managing a power fire management device installed for analyzing a complex environment of power consumption and fire occurrence in a smart safety livestock house, and to develop and disseminate a safe and optimized intelligent smart safety livestock house.

  • PDF

A Study on the Continues Use Intention of Artificial Intelligence RPA in the Financial Industry (금융업의 인공지능(AI) RPA 지속사용의도에 관한 연구)

  • Kyeong-Rok Seo;Hyeon-Suk Park
    • Industry Promotion Research
    • /
    • v.8 no.1
    • /
    • pp.55-68
    • /
    • 2023
  • The purpose of this study is to investigate the factors that influence the intention to continuously use the RPA program used in the financial industry for those working in the financial industry. In particular, the purpose of this study is to understand the will to accept and the perception of acceptance conflict by considering the characteristics of individuals in the relationship between work and information technology. As a result of the study, it can be confirmed that the RPA system based on intelligent process automation including artificial intelligence should be further strengthened in the transformation of a digitalized enterprise rather than the RPA based on simple task automation that is currently most used. In general, the phenomenon of cognitive dissonance was prominent for the adoption of new technology, but the phenomenon of cognitive dissonance did not appear for the continued use of RPA in the financial industry. Able to know. In the future in the financial industry, it is thought that the change in the labor organization will be accelerated as the suitability of repetitive tasks and technologies is increased.

A Cooperation Strategy of Multi-agents in Real-Time Dynamic Environments (실시간 동적인 환경에서 다중 에이전트의 협동 기법)

  • Yoo, Han-Ha;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Game Society
    • /
    • v.6 no.3
    • /
    • pp.13-22
    • /
    • 2006
  • Games such as sports, RTS, RPG, which teams of players play, require advanced artificial intelligence technology for team management. The existing artificial intelligence enables an intelligent agent to have the autonomy solving problem by itself, but to lack interaction and cooperation between agents. This paper presents "Level Unified Approach Method" with effective role allocation and autonomy in multiagent system. This method allots sub-goals to agents using role information to accomplish a global goal. Each agent makes a decision and takes actions by itself in dynamic environments. Global goal of Team coordinates to allocated role in tactics approach. Each agent leads interactive cooperation by sharing state information with another using Databoard, As each agent has planning capacity, an agent takes appropriate actions for playing allocated roles in dynamic environments. This cooperation and interactive operation between agents causes a collision problem, so it approaches at tactics side for controlling this problem. Our experimental result shows that "Level Unified Approach Method" has better performance than existing rental approach method or de-centralized approach method.

  • PDF

Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China (인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로)

  • Lee, JaeWon;Oh, SangJin
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.71-90
    • /
    • 2020
  • Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using 'finance and technology' and 'finance and ecosystem' as keywords for companies. In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine. Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries. Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology. Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.

Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection (설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형)

  • Gundoo Moon;Kyoung-jae Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.241-265
    • /
    • 2023
  • A corporate insolvency prediction model serves as a vital tool for objectively monitoring the financial condition of companies. It enables timely warnings, facilitates responsive actions, and supports the formulation of effective management strategies to mitigate bankruptcy risks and enhance performance. Investors and financial institutions utilize default prediction models to minimize financial losses. As the interest in utilizing artificial intelligence (AI) technology for corporate insolvency prediction grows, extensive research has been conducted in this domain. However, there is an increasing demand for explainable AI models in corporate insolvency prediction, emphasizing interpretability and reliability. The SHAP (SHapley Additive exPlanations) technique has gained significant popularity and has demonstrated strong performance in various applications. Nonetheless, it has limitations such as computational cost, processing time, and scalability concerns based on the number of variables. This study introduces a novel approach to variable selection that reduces the number of variables by averaging SHAP values from bootstrapped data subsets instead of using the entire dataset. This technique aims to improve computational efficiency while maintaining excellent predictive performance. To obtain classification results, we aim to train random forest, XGBoost, and C5.0 models using carefully selected variables with high interpretability. The classification accuracy of the ensemble model, generated through soft voting as the goal of high-performance model design, is compared with the individual models. The study leverages data from 1,698 Korean light industrial companies and employs bootstrapping to create distinct data groups. Logistic Regression is employed to calculate SHAP values for each data group, and their averages are computed to derive the final SHAP values. The proposed model enhances interpretability and aims to achieve superior predictive performance.