• Title/Summary/Keyword: intelligent gripper

Search Result 13, Processing Time 0.027 seconds

Development of the Intelligent Gripper Using Two 3-axis Force Sensor (3 축 힘센서를 이용한 지능형 그리퍼 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.47-54
    • /
    • 2007
  • This paper describes the development of the intelligent gripper with two 3-axis force sensor that can measure forces Fx, Fy, Fz simultaneously, for stably grasping an unknown object. In order to grasp an unknown object using an intelligent gripper softly, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured farces. Thus, the intelligent gripper should be composed of 3-axis force sensor that can measure forces Fx, Fy, Fz at the same time. In this paper, the intelligent gripper with two 3-axis force sensor was manufactured and its characteristic test was carried out. The fabricated gripper could grasp an unknown object stably. Also, the sensing element of 3-axis force sensor was modeled and designed with five parallel-plate beams, and 3-axis force sensor for the intelligent gripper was fabricated. The characteristic test of the made sensor was carried out.

Development of Intelligent Gripper Control Device to Safely Grip Unknown Objects (미지물체를 안전하게 잡기 위한 지능형 그리퍼의 제어장치 개발)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • In this study, we designed and manufactured an intelligent gripper-control device to safely grip unknown objects. The gripper control device consists of a DSP circuit, power supply circuit, communication circuit, and amplifier circuit diagrams. The DSP is used because the values of the 3-axis force sensor to which the gripper is attached are measured and calculated at high speeds. The gripping force is determined based on this value, and the object must be safely gripped with the determined value. A basic characteristic test of the control device of the manufactured intelligent gripper was conducted, and it was confirmed that it operated safely.

Development of an electric gripper system for intelligent manipulators (지능로보트를 위한 전기식 그리퍼의 개발에 관한 연구)

  • 이진원;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.216-221
    • /
    • 1989
  • Most of industrial robots are reprogrammable for various operations. while the gripper is only used for on - off grasping. If the gripper has the intelligent ability to interact with its environment, it will be very useful in many fine motion application. For this pur pose, an electric gripper system is, developed through experiments and simulation. This paper describes a method of the contact position between the gripper and the grasped object by using strain gauge sensors, and presents the related experimental results.

  • PDF

Design and Analysis of Ball Screw-driven Robotic Gripper (볼 나사 구동형 로봇 그리퍼 설계 및 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • This paper presents a ball screw-driven robotic gripper mechanism which is possible to grasp an object and analyzes its kinematic feature for grasping by simulation. For the purpose of identifying the feature of the robot gripper, we try to confirm the kinematics relating the joint space of the driving actuator to the gripper's tip space. To be specific, the proposed robot gripper employs one actuator and a symmetrical closed-chain structure. As a result, the specified robot gripper has an advantage of robustness to external forces structurally, and it is easy to implement simple grasping operations. Also the gripper has a useful squeezing effect for power grasping.

Design of Controller and Gripper for Wireless Communication of Gripper Contact Signal (그리퍼 접촉신호의 무선통신을 위한 제어장치 및 그리퍼 설계)

  • Kim, Hyeon Min;Kim, Chong Jin;Kim, Gab Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.821-829
    • /
    • 2014
  • This paper describes the development of a wireless communication controller of gripper contact signal for industrial robot. The wireless communication gripper controller is composed of a robot wireless communication controller and a gripper wireless transmitting/receiving controller. The robot wireless communication controller transmits the data of gripper sensors, and the gripper wireless communication controller receives the data. And the controller sends the data to the robot controller of industrial robot. As a result of the characteristics test of the wireless communication gripper controller, it is thought that the robot wireless communication controller A transmits and receives three gripper wireless transmitting/receiving controller A1, A2, A3 another. Thus, the developed wireless communication gripper controller can be used for transmitting/ receiving the data of gripper sensors for industrial robot.

A Study on a Precise Control of Position and Orientation of Robot Gripper for Forming Parts Handling in High Temperature (고열 단조부품 핸들링을 위한 로봇 그리퍼의 방위 및 포지션 정밀제어에 관한 연구)

  • Jeong, Yang-Keun;Kim, Mim-seong;Jo, Sang-Young;Won, Jong-Beom;Won, Jong-Dae;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • In this paper, we describe a new approch to control method of a four joints-robot gripper for the purpose of parts assemblying. The robot gripper is specifically modeled by using a 3D CAD program (ANSYS), considering artificial grippers, and then the proposed control method is illustrated through the dynamic simulation tool (Adams). Each gripper finger is individually controlled to be located at the optimal positions where the maximal joint torque can be calculated. To verified the effectiveness of the proposed control method, we proposed two cases for the reference position of gripper. By comparing the control performance of two method, the performance of the proposed control method was verified.

Development of 3-axis finger force sensor for an intelligent robot's hand (로봇의 지능형 손을 위한 3축 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.411-416
    • /
    • 2006
  • This paper describes the development of a 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand. In order to safely grasp an unknown object, robot's hand should measure the weight of an object and the force of grasping direction simultaneous. But, in the published papers, the grippers and hands equippd with the force sensor that could only measure the force of grasping direction, and grasped objects using their sensors. These grippers and hands can't safely grasp unknown objects, because they can't measure the weight of it. Thus, it is necessary to develop 3-axis force sensor that can measure the weight of an object and the force of grasping direction for an intelligent gripper. In this paper, 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand was developed. In order to fabricate a 3-axis finger force sensor, the sensing elements were modeled using parallel plate beams, and the theoretical analysis was performed to determine the size of sensing elements, then the 3-axis finger force sensor was fabricated. Also, the characteristic test of the developed 3-axis finger force sensor was performed.

Development of Intelligent Robot's Hand with Three-Axis Finger Force Sensors for Intelligent Robot (3축 손가락 힘센서를 가진 지능로봇의 지능형 로봇손 개발)

  • Kim, Gab-Soon;Shin, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.300-305
    • /
    • 2009
  • This paper describes the intelligent robot's hand with three-axis finger force sensors for an intelligent robot. In order to grasp an unknown object safely, it should measure the mass of the object, and determine the grasping force using the mass, then control the robot's fingers with the grasping force. In this paper, the intelligent robot's hand for an intelligent robot was developed. First, the three-axis finger force sensors were designed and manufactured, second, the intelligent robot's hand with three-axis finger force sensors were designed and fabricated, third, the high-speed control system was designed and manufactured using DSP( digital signal processor), finally, the characteristic test to grasp an unknown object safely was carried out. It was confirmed that the developed intelligent robot's hand could grasp an unknown object safely.

The Design of an Intelligent Assembly Robot System for Lens Modules of Phone Camera.

  • Song, Jun-Yeob;Lee, Chang-Woo;Kim, Yeong-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.649-652
    • /
    • 2005
  • The camera cellular phone has a large portion of cellular phone market in recent year. The variety of a customer demand makes a fast model change and the spatial resolution is changed from VGA to multi-mega pixel. The 1.3 mega pixel (MP) camera cellular phone was first released into the Korean market in October 2003. The major cellular phone companies released a 2MP camera cellular phone that supports zoom function and a 2MP camera cellular phone is settled down with the Korea cellular phone market. It makes a keen competition in price and demands automation for phone camera module. There is an increasing requirement for the automatic assembly to correspond to a fast model change. The hard automation techniques that rely on dedicated manufacturing system are too inflexible to meet this requirement. Therefore in this study, this system is designed with the flexibility concept in order to cope with phone camera module change. The system has a same platform that has X-Y-Z motion or X-Z motion with ${\mu}m$order accuracy. It has a special gripper according to the type of a component to be put together. If the camera model changes, the gripper may be updated to fit for the camera module. The controller of this system acquires the data sets that have the information about the assembly part by the tray. This information is obtained ahead of an inspection step. The controller excludes an inferior part to be assembled by using this information to diminish the inferior goods. The assembly jig used in this system has a function of self adjustment that reduces the tact time and also diminish the inferior goods. Finally, the intelligent assembly system for phone camera module will be designed to get a flexibility to meet model change and a high productivity with a high reliability.

  • PDF

Experimental Study on an Underwater Pole Climb Robot for the Maintenance of Offshore Wind Turbine Substructures (해상풍력발전 지지구조물의 유지보수용 수중 기둥등반로봇에 관한 실험적 연구)

  • Im, Eun Cheol;Ko, Jin Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.238-244
    • /
    • 2022
  • Maintenance works of offshore wind turbines could take a longer time, which causes the reduction of their energy production efficiency, than those of onshore wind turbines owing to severe offshore environment. Subsequently, preventive maintenance measures are required to increase the production efficiency. Thus, we proposed a wheel-based Underwater Pole Climbing Robot (UPCR) platform, which was aimed at the periodic inspection and maintenance of the substructures of the offshore wind turbines, with three advantages: high speed, good mobility and low power consumption. In the proposed platform, a self-locking system using a gripper module was adopted for preventing slippery problem and a dual configuration was chosen for moving on a branched structure. As a result, the proposed robot was able to continuously climb, preserve it's position at the pole without consuming energy, and move from the pole to the other branched pole. The results of this research show that the UPCR has basic moving capabilities required for the underwater work for the substructures of the offshore wind turbines.