• Title/Summary/Keyword: intelligent control system

Search Result 2,865, Processing Time 0.032 seconds

Development of the Broadband PLC Home Controller using JINI Surrogate

  • Kim, Yong-Seok;Kim, Hee-Sun;Lee, Chang-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1563-1567
    • /
    • 2005
  • The Home network system means that information appliances, Home PCs, etc., using wired or wireless network method enable to control and share with peripheral devices such as internet, shared data, a scanner and a printer, and it is networking solution, which intelligent communication will be possible as the system which can do a remote control such as TV Set, refrigerators, air conditioners, DVD players, digital camcorders based on external network using an internet, a potable information terminal and a mobile phone whenever, wherever and freely. In this study, the home network interface solution is used one of the wired network standards, PLC (Power-Line Communication) technology, so we can construct of intelligent home network's home controller without re-build a network at home. On keeping with current waves of thought, we will focus on a home controller development with great interest which is enabled to do an effective managed control, applying intelligent home network technology which can be new paradigm like a cyber apartment.

  • PDF

Intelligent algorithm and optimum design of fuzzy theory for structural control

  • Chen, Z.Y.;Wang, Ruei-Yuan;Meng, Yahui;Chen, Timothy
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.537-544
    • /
    • 2022
  • The optimal design of structural composite materials is a research topic that attracts the attention of lots researchers. For many more thirty years, there has been increasing interest in the applications in all kinds of topics, which means taking advantage of fuzzy set theory, fuzzy analysis, and fuzzy control for designing high-performance and efficient structural systems is a fundamental concern for engineers, and many applications require the use of a systems approach to combine structural and active control systems. Therefore, an intelligent method can be designed based on the mitigation method, and by establishing the stable of the closed-loop fuzzy mitigation system, the behavior of the closed-loop fuzzy mitigation system can be accurately predicted. In this article, the intelligent algorithm and optimum design of fuzzy theory for structural control has been provided and demonstrated effective and efficient in practical engineering issues.

Intelligent Control of Induction Motor Using Hybrid System GA-PSO

  • Kim, Dong-Hwa;Park, Jin-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1086-1091
    • /
    • 2005
  • This paper focuses on intelligent control of induction motor by hybrid system consisting of GA-PSO. Induction motor has been using in industrial area. However, it is challengeable on how we control effectively. From this point, an optimal solution using GA (Genetic Algorithm) and PSO (Particle Swarm Optimization) is introduced to intelligent control. In this case, it is possible to obtain local solution because chromosomes or individuals which have only a close affinity can convergent. To improve an optimal learning solution of control, This paper deal with applying PSO and Euclidian data distance to mutation procedure on GA's differentiation. Through this approaches, we can have global and local optimal solution together, and the faster and the exact optimal solution without any local solution. Four test functions are used for proof of this suggested algorithm.

  • PDF

Periodic Sampled-Data Control for Fuzzy Systems;Intelligent Digital Redesign Approach

  • Kim, D.W.;Joo, Y.H.;Park, J.B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1492-1495
    • /
    • 2005
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the affine control scheme is employed to increase the degree of freedom; 2) the fuzzy-model-based periodic control is employed; and the control input is changed n times during one sampling period; 3) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system; but its discretization error vanishes as n approaches the infinity. 4) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

  • PDF

A Modeling and Control of Intelligent Cruise Control Systems (지능형 순항 제어 시스템 모델링 및 제어)

  • Lee, Se-Jin;Hong, Jin-Ho;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.283-288
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster and a step-motor controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were per formed using a complete nonlinear vehicle model. The results indicate the proposed throttle/brake control law can provide the ICC system with an optimized performance.

Intelligent control of pneumatic actuator using MPWM (MPWM을 이용한 공압 실린더의 지능제어)

  • 송인성;표성만;안경관;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF

Framework of MANPro-based control for intelligent manufacturing systems (지능형 생산시스템의 MANPro기반 제어 기초구조)

  • Sin, Mun-Su;Jeong, Mu-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.467-470
    • /
    • 2004
  • MANPro-based control is a novel control paradigm aimed at intelligent manufacturing systems on the basis of mobile agent-based negotiation process (MANPro). MANPro is a negotiation mechanism based on the agent-based control architecture and, especially, it adapts a mobile agent system called N-agent for the negotiation process. N-agent travels around the network of distributed manufacturing systems to acquire information, and it makes a decision for system control according to the obtained information. MANPro includes communication architecture and information architecture for intelligent shop floor control. MANPro also considers the following issues: (1) negotiation mechanism, (2) single-agent internal strategic policies, and (3) information model. Communication architecture concerns the first issue of the negotiation mechanism. It provides information exchanging mechanism with functional modules. In specific, N-agent is equipped with an intelligent reasoning engine with a built-in knowledge base. This reasoning engine is closely related to the single-agent internal strategic policies of the second issue. Finally, ontology-based information architecture addresses information models and provides a framework for information modeling on negotiation. In this paper, these three issues are addressed in detail and a framework of MANPro-based control is also proposed.

  • PDF

Observer-based Intelligent Control of Nonlinear Networked Control Systems with Packet Loss for Wireless Sensor Network (무선 센서 네트워크를 위한 패킷 손실을 포함한 비선형 네트워크 제어 시스템의 관측기 기반 지능 제어기 설계)

  • Ra, In-Ho;Kim, Se-Jin;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.185-190
    • /
    • 2009
  • In this paper, an observer-based intelligent controller for the nonlinear networked control systems with packet loss is proposed for wireless sensor network. For the intelligent control of the nonlinear system, it uses the fuzzy system with Takagi-Sugeno (T-S) fuzzy model. The observer is designed for the fuzzy networked control system, and the output feedback controller is proposed for the stability of estimates and errors. The stability condition of the closed-loop system with the proposed controller is represented to the linear matrix inequality (LMI) form, and the observer and control gain are obtained by LMI. An example is given to show the verification discussed throughout the paper.

Intelligent hybrid controlled structures with soil-structure interaction

  • Zhang, X.Z.;Cheng, F.Y.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.573-591
    • /
    • 2004
  • A hybrid control system is presented for seismic-resistant building structures with and without soil-structure interaction (SSI). The hybrid control is a damper-actuator-bracing control system composed of passive and active controllers. An intelligent algorithm is developed for the hybrid system, in which the passive damper is designed for minor and moderate earthquakes and the active control is designed to activate when the structural response is greater than a given threshold quantity. Thus, the external energy for active controller can be optimally utilized. In the control of a multistory building, the controller placement is determined by evaluating the optimal location index (OLI) calculated from six earthquake sources. In the study, the soil-structure interaction is considered both in frequency domain and time domain analyses. It is found that the interaction can significantly affect the control effectiveness. In the hybrid control algorithm with intelligent strategy, the working stages of passive and active controllers can be different for a building with and without considering SSI. Thus SSI is essential to be included in predicting the response history of a controlled structure.

PDC Intelligent control-based theory for structure system dynamics

  • Chen, Tim;Lohnash, Megan;Owens, Emmanuel;Chen, C.Y.J.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2020
  • This paper deals with the problem of global stabilization for a class of nonlinear control systems. An effective approach is proposed for controlling the system interaction of structures through a combination of parallel distributed compensation (PDC) intelligent controllers and fuzzy observers. An efficient approximate inference algorithm using expectation propagation and a Bayesian additive model is developed which allows us to predict the total number of control systems, thereby contributing to a more adaptive trajectory for the closed-loop system and that of its corresponding model. The closed-loop fuzzy system can be made as close as desired, so that the behavior of the closed-loop system can be rigorously predicted by establishing that of the closed-loop fuzzy system.