• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.024 seconds

Toward understanding learning patterns in an open online learning platform using process mining (프로세스 마이닝을 활용한 온라인 교육 오픈 플랫폼 내 학습 패턴 분석 방법 개발)

  • Taeyoung Kim;Hyomin Kim;Minsu Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.285-301
    • /
    • 2023
  • Due to the increasing demand and importance of non-face-to-face education, open online learning platforms are getting interests both domestically and internationally. These platforms exhibit different characteristics from online courses by universities and other educational institutions. In particular, students engaged in these platforms can receive more learner autonomy, and the development of tools to assist learning is required. From the past, researchers have attempted to utilize process mining to understand realistic study behaviors and derive learning patterns. However, it has a deficiency to employ it to the open online learning platforms. Moreover, existing research has primarily focused on the process model perspective, including process model discovery, but lacks a method for the process pattern and instance perspectives. In this study, we propose a method to identify learning patterns within an open online learning platform using process mining techniques. To achieve this, we suggest three different viewpoints, e.g., model-level, variant-level, and instance-level, to comprehend the learning patterns, and various techniques are employed, such as process discovery, conformance checking, autoencoder-based clustering, and predictive approaches. To validate this method, we collected a learning log of machine learning-related courses on a domestic open education platform. The results unveiled a spaghetti-like process model that can be differentiated into a standard learning pattern and three abnormal patterns. Furthermore, as a result of deriving a pattern classification model, our model achieved a high accuracy of 0.86 when predicting the pattern of instances based on the initial 30% of the entire flow. This study contributes to systematically analyze learners' patterns using process mining.

Predicting Future ESG Performance using Past Corporate Financial Information: Application of Deep Neural Networks (심층신경망을 활용한 데이터 기반 ESG 성과 예측에 관한 연구: 기업 재무 정보를 중심으로)

  • Min-Seung Kim;Seung-Hwan Moon;Sungwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.85-100
    • /
    • 2023
  • Corporate ESG performance (environmental, social, and corporate governance) reflecting a company's strategic sustainability has emerged as one of the main factors in today's investment decisions. The traditional ESG performance rating process is largely performed in a qualitative and subjective manner based on the institution-specific criteria, entailing limitations in reliability, predictability, and timeliness when making investment decisions. This study attempted to predict the corporate ESG rating through automated machine learning based on quantitative and disclosed corporate financial information. Using 12 types (21,360 cases) of market-disclosed financial information and 1,780 ESG measures available through the Korea Institute of Corporate Governance and Sustainability during 2019 to 2021, we suggested a deep neural network prediction model. Our model yielded about 86% of accurate classification performance in predicting ESG rating, showing better performance than other comparative models. This study contributed the literature in a way that the model achieved relatively accurate ESG rating predictions through an automated process using quantitative and publicly available corporate financial information. In terms of practical implications, the general investors can benefit from the prediction accuracy and time efficiency of our proposed model with nominal cost. In addition, this study can be expanded by accumulating more Korean and international data and by developing a more robust and complex model in the future.

An Analysis of the Status of National Research and Development Projects in Records Management (기록관리 분야 국가연구개발사업 현황 분석)

  • Hoemyeong Jeong;Soonhee Kim
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.23 no.4
    • /
    • pp.137-157
    • /
    • 2023
  • The scale of research and development (R&D) investment is increasing to strengthen national competitiveness through technological innovation, leading to an increased interest in investment efficiency. In records management, the National Archives of Korea has been leading the national research and development project since 2008. Accordingly, this study analyzed R&D projects in records management regarding implementing organization, performance or outcomes, and subjects, targeting 111 National Archives of Korea contract research projects from 2008 to 2022. The analysis showed that small and medium-sized enterprises (SMEs) were the most likely to conduct research, the majority of the research outcomes were academic publications, and there were some discrepancies between the reported performance in research and the actual performance. In terms of research subjects, the most common type of records are paper or print documents, establishing an electronic management system among the National Archives' works. In terms of the frequency of keywords in the records management process and research projects, it was found that research was mainly conducted on "preservation." Meanwhile, only 10 cases, or 9% of the 111 projects, were found to be relevant in terms of utilizing big data and developing intelligent technologies related to digital transformation. Therefore, the effectiveness of the R&D project must be improved through follow-up management of the results even after the research project is completed. In addition, in terms of research topics, it was identified that aside from "preservation," studies focusing on "transfer," "classification," "evaluation," and "collection," as well as research that responds to digital transformation, are needed.

A Data-based Sales Forecasting Support System for New Businesses (데이터기반의 신규 사업 매출추정방법 연구: 지능형 사업평가 시스템을 중심으로)

  • Jun, Seung-Pyo;Sung, Tae-Eung;Choi, San
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.1-22
    • /
    • 2017
  • Analysis of future business or investment opportunities, such as business feasibility analysis and company or technology valuation, necessitate objective estimation on the relevant market and expected sales. While there are various ways to classify the estimation methods of these new sales or market size, they can be broadly divided into top-down and bottom-up approaches by benchmark references. Both methods, however, require a lot of resources and time. Therefore, we propose a data-based intelligent demand forecasting system to support evaluation of new business. This study focuses on analogical forecasting, one of the traditional quantitative forecasting methods, to develop sales forecasting intelligence systems for new businesses. Instead of simply estimating sales for a few years, we hereby propose a method of estimating the sales of new businesses by using the initial sales and the sales growth rate of similar companies. To demonstrate the appropriateness of this method, it is examined whether the sales performance of recently established companies in the same industry category in Korea can be utilized as a reference variable for the analogical forecasting. In this study, we examined whether the phenomenon of "mean reversion" was observed in the sales of start-up companies in order to identify errors in estimating sales of new businesses based on industry sales growth rate and whether the differences in business environment resulting from the different timing of business launch affects growth rate. We also conducted analyses of variance (ANOVA) and latent growth model (LGM) to identify differences in sales growth rates by industry category. Based on the results, we proposed industry-specific range and linear forecasting models. This study analyzed the sales of only 150,000 start-up companies in Korea in the last 10 years, and identified that the average growth rate of start-ups in Korea is higher than the industry average in the first few years, but it shortly shows the phenomenon of mean-reversion. In addition, although the start-up founding juncture affects the sales growth rate, it is not high significantly and the sales growth rate can be different according to the industry classification. Utilizing both this phenomenon and the performance of start-up companies in relevant industries, we have proposed two models of new business sales based on the sales growth rate. The method proposed in this study makes it possible to objectively and quickly estimate the sales of new business by industry, and it is expected to provide reference information to judge whether sales estimated by other methods (top-down/bottom-up approach) pass the bounds from ordinary cases in relevant industry. In particular, the results of this study can be practically used as useful reference information for business feasibility analysis or technical valuation for entering new business. When using the existing top-down method, it can be used to set the range of market size or market share. As well, when using the bottom-up method, the estimation period may be set in accordance of the mean reverting period information for the growth rate. The two models proposed in this study will enable rapid and objective sales estimation of new businesses, and are expected to improve the efficiency of business feasibility analysis and technology valuation process by developing intelligent information system. In academic perspectives, it is a very important discovery that the phenomenon of 'mean reversion' is found among start-up companies out of general small-and-medium enterprises (SMEs) as well as stable companies such as listed companies. In particular, there exists the significance of this study in that over the large-scale data the mean reverting phenomenon of the start-up firms' sales growth rate is different from that of the listed companies, and that there is a difference in each industry. If a linear model, which is useful for estimating the sales of a specific company, is highly likely to be utilized in practical aspects, it can be explained that the range model, which can be used for the estimation method of the sales of the unspecified firms, is highly likely to be used in political aspects. It implies that when analyzing the business activities and performance of a specific industry group or enterprise group there is political usability in that the range model enables to provide references and compare them by data based start-up sales forecasting system.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.

Exploratory Case Study for Key Successful Factors of Producy Service System (Product-Service System(PSS) 성공과 실패요인에 관한 탐색적 사례 연구)

  • Park, A-Rum;Jin, Dong-Su;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.255-277
    • /
    • 2011
  • Product Service System(PSS), which is an integrated combination of product and service, provides new value to customer and makes companies sustainable as well. The objective of this paper draws Critical Successful Factors(CSF) of PSS through multiple case study. First, we review various concepts and types in PSS and Platform business literature currently available on this topic. Second, after investigating various cases with the characteristics of PSS and platform business, we select four cases of 'iPod of Apple', 'Kindle of Amazon', 'Zune of Microsoft', and 'e-book reader of Sony'. Then, the four cases are categorized as successful and failed cases according to criteria of case selection and PSS classification. We consider two methodologies for the case selection, i.e., 'Strategies for the Selection of Samples and Cases' proposed by Bent(2006) and the seven case selection procedures proposed by Jason and John(2008). For case selection, 'Stratified sample and Paradigmatic cases' is adopted as one of several options for sampling. Then, we use the seven case selection procedures such as 'typical', 'diverse', 'extreme', 'deviant', 'influential', 'most-similar', and 'mostdifferent' and among them only three procedures of 'diverse', 'most?similar', and 'most-different' are applied for the case selection. For PSS classification, the eight PSS types, suggested by Tukker(2004), of 'product related', 'advice and consulancy', 'product lease', 'product renting/sharing', 'product pooling', 'activity management', 'pay per service unit', 'functional result' are utilized. We categorize the four selected cases as a product oriented group because the cases not only sell a product, but also offer service needed during the use phase of the product. Then, we analyze the four cases by using cross-case pattern that Eisenhardt(1991) suggested. Eisenhardt(1991) argued that three processes are required for avoiding reaching premature or even false conclusion. The fist step includes selecting categories of dimensions and finding within-group similarities coupled with intergroup difference. In the second process, pairs of cases are selected and listed. The second step forces researchers to find the subtle similarities and differences between cases. The third process is to divide the data by data source. The result of cross-case pattern indicates that the similarities of iPod and Kindle as successful cases are convenient user interface, successful plarform strategy, and rich contents. The differences between the successful cases are that, wheares iPod has been recognized as the culture code, Kindle has implemented a low price as its main strategy. Meanwhile, the similarities of Zune and PRS series as failed cases are lack of sufficient applications and contents. The differences between the failed cases are that, wheares Zune adopted an undifferentiated strategy, PRS series conducted high-price strategy. From the analysis of the cases, we generate three hypotheses. The first hypothesis assumes that a successful PSS system requires convenient user interface. The second hypothesis assumes that a successful PSS system requires a reciprocal(win/win) business model. The third hypothesis assumes that a successful PSS system requires sufficient quantities of applications and contents. To verify the hypotheses, we uses the cross-matching (or pattern matching) methodology. The methodology matches three key words (user interface, reciprocal business model, contents) of the hypotheses to the previous papers related to PSS, digital contents, and Information System (IS). Finally, this paper suggests the three implications from analyzed results. A successful PSS system needs to provide differentiated value for customers such as convenient user interface, e.g., the simple design of iTunes (iPod) and the provision of connection to Kindle Store without any charge. A successful PSS system also requires a mutually benefitable business model as Apple and Amazon implement a policy that provides a reasonable proft sharing for third party. A successful PSS system requires sufficient quantities of applications and contents.

Development of a Detection Model for the Companies Designated as Administrative Issue in KOSDAQ Market (KOSDAQ 시장의 관리종목 지정 탐지 모형 개발)

  • Shin, Dong-In;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.157-176
    • /
    • 2018
  • The purpose of this research is to develop a detection model for companies designated as administrative issue in KOSDAQ market using financial data. Administration issue designates the companies with high potential for delisting, which gives them time to overcome the reasons for the delisting under certain restrictions of the Korean stock market. It acts as an alarm to inform investors and market participants of which companies are likely to be delisted and warns them to make safe investments. Despite this importance, there are relatively few studies on administration issues prediction model in comparison with the lots of studies on bankruptcy prediction model. Therefore, this study develops and verifies the detection model of the companies designated as administrative issue using financial data of KOSDAQ companies. In this study, logistic regression and decision tree are proposed as the data mining models for detecting administrative issues. According to the results of the analysis, the logistic regression model predicted the companies designated as administrative issue using three variables - ROE(Earnings before tax), Cash flows/Shareholder's equity, and Asset turnover ratio, and its overall accuracy was 86% for the validation dataset. The decision tree (Classification and Regression Trees, CART) model applied the classification rules using Cash flows/Total assets and ROA(Net income), and the overall accuracy reached 87%. Implications of the financial indictors selected in our logistic regression and decision tree models are as follows. First, ROE(Earnings before tax) in the logistic detection model shows the profit and loss of the business segment that will continue without including the revenue and expenses of the discontinued business. Therefore, the weakening of the variable means that the competitiveness of the core business is weakened. If a large part of the profits is generated from one-off profit, it is very likely that the deterioration of business management is further intensified. As the ROE of a KOSDAQ company decreases significantly, it is highly likely that the company can be delisted. Second, cash flows to shareholder's equity represents that the firm's ability to generate cash flow under the condition that the financial condition of the subsidiary company is excluded. In other words, the weakening of the management capacity of the parent company, excluding the subsidiary's competence, can be a main reason for the increase of the possibility of administrative issue designation. Third, low asset turnover ratio means that current assets and non-current assets are ineffectively used by corporation, or that asset investment by corporation is excessive. If the asset turnover ratio of a KOSDAQ-listed company decreases, it is necessary to examine in detail corporate activities from various perspectives such as weakening sales or increasing or decreasing inventories of company. Cash flow / total assets, a variable selected by the decision tree detection model, is a key indicator of the company's cash condition and its ability to generate cash from operating activities. Cash flow indicates whether a firm can perform its main activities(maintaining its operating ability, repaying debts, paying dividends and making new investments) without relying on external financial resources. Therefore, if the index of the variable is negative(-), it indicates the possibility that a company has serious problems in business activities. If the cash flow from operating activities of a specific company is smaller than the net profit, it means that the net profit has not been cashed, indicating that there is a serious problem in managing the trade receivables and inventory assets of the company. Therefore, it can be understood that as the cash flows / total assets decrease, the probability of administrative issue designation and the probability of delisting are increased. In summary, the logistic regression-based detection model in this study was found to be affected by the company's financial activities including ROE(Earnings before tax). However, decision tree-based detection model predicts the designation based on the cash flows of the company.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

Social Tagging-based Recommendation Platform for Patented Technology Transfer (특허의 기술이전 활성화를 위한 소셜 태깅기반 지적재산권 추천플랫폼)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.53-77
    • /
    • 2015
  • Korea has witnessed an increasing number of domestic patent applications, but a majority of them are not utilized to their maximum potential but end up becoming obsolete. According to the 2012 National Congress' Inspection of Administration, about 73% of patents possessed by universities and public-funded research institutions failed to lead to creating social values, but remain latent. One of the main problem of this issue is that patent creators such as individual researcher, university, or research institution lack abilities to commercialize their patents into viable businesses with those enterprises that are in need of them. Also, for enterprises side, it is hard to find the appropriate patents by searching keywords on all such occasions. This system proposes a patent recommendation system that can identify and recommend intellectual rights appropriate to users' interested fields among a rapidly accumulating number of patent assets in a more easy and efficient manner. The proposed system extracts core contents and technology sectors from the existing pool of patents, and combines it with secondary social knowledge, which derives from tags information created by users, in order to find the best patents recommended for users. That is to say, in an early stage where there is no accumulated tag information, the recommendation is done by utilizing content characteristics, which are identified through an analysis of key words contained in such parameters as 'Title of Invention' and 'Claim' among the various patent attributes. In order to do this, the suggested system extracts only nouns from patents and assigns a weight to each noun according to the importance of it in all patents by performing TF-IDF analysis. After that, it finds patents which have similar weights with preferred patents by a user. In this paper, this similarity is called a "Domain Similarity". Next, the suggested system extract technology sector's characteristics from patent document by analyzing the international technology classification code (International Patent Classification, IPC). Every patents have more than one IPC, and each user can attach more than one tag to the patents they like. Thus, each user has a set of IPC codes included in tagged patents. The suggested system manages this IPC set to analyze technology preference of each user and find the well-fitted patents for them. In order to do this, the suggeted system calcuates a 'Technology_Similarity' between a set of IPC codes and IPC codes contained in all other patents. After that, when the tag information of multiple users are accumulated, the system expands the recommendations in consideration of other users' social tag information relating to the patent that is tagged by a concerned user. The similarity between tag information of perferred 'patents by user and other patents are called a 'Social Simialrity' in this paper. Lastly, a 'Total Similarity' are calculated by adding these three differenent similarites and patents having the highest 'Total Similarity' are recommended to each user. The suggested system are applied to a total of 1,638 korean patents obtained from the Korea Industrial Property Rights Information Service (KIPRIS) run by the Korea Intellectual Property Office. However, since this original dataset does not include tag information, we create virtual tag information and utilized this to construct the semi-virtual dataset. The proposed recommendation algorithm was implemented with JAVA, a computer programming language, and a prototype graphic user interface was also designed for this study. As the proposed system did not have dependent variables and uses virtual data, it is impossible to verify the recommendation system with a statistical method. Therefore, the study uses a scenario test method to verify the operational feasibility and recommendation effectiveness of the system. The results of this study are expected to improve the possibility of matching promising patents with the best suitable businesses. It is assumed that users' experiential knowledge can be accumulated, managed, and utilized in the As-Is patent system, which currently only manages standardized patent information.