• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.033 seconds

Study on Machine Learning Techniques for Malware Classification and Detection

  • Moon, Jaewoong;Kim, Subin;Song, Jaeseung;Kim, Kyungshin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4308-4325
    • /
    • 2021
  • The importance and necessity of artificial intelligence, particularly machine learning, has recently been emphasized. In fact, artificial intelligence, such as intelligent surveillance cameras and other security systems, is used to solve various problems or provide convenience, providing solutions to problems that humans traditionally had to manually deal with one at a time. Among them, information security is one of the domains where the use of artificial intelligence is especially needed because the frequency of occurrence and processing capacity of dangerous codes exceeds the capabilities of humans. Therefore, this study intends to examine the definition of artificial intelligence and machine learning, its execution method, process, learning algorithm, and cases of utilization in various domains, particularly the cases and contents of artificial intelligence technology used in the field of information security. Based on this, this study proposes a method to apply machine learning technology to the method of classifying and detecting malware that has rapidly increased in recent years. The proposed methodology converts software programs containing malicious codes into images and creates training data suitable for machine learning by preparing data and augmenting the dataset. The model trained using the images created in this manner is expected to be effective in classifying and detecting malware.

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.

An Intelligent System for Filling of Missing Values in Weather Data

  • Maqsood Ali Solangi;Ghulam Ali Mallah;Shagufta Naz;Jamil Ahmed Chandio;Muhammad Bux Soomro
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.95-99
    • /
    • 2023
  • Recently Machine Learning has been considered as one of the active research areas of Computer Science. The various Artificial Intelligence techniques are used to solve the classification problems of environmental sciences, biological sciences, and medical sciences etc. Due to the heterogynous and malfunctioning weather sensors a considerable amount of noisy data with missing is generated, which is alarming situation for weather prediction stockholders. Filling of these missing values with proper method is really one of the significant problems. The data must be cleaned before applying prediction model to collect more precise & accurate results. In order to solve all above stated problems, this research proposes a novel weather forecasting system which consists upon two steps. The first step will prepare data by reducing the noise; whereas a decision model is constructed at second step using regression algorithm. The Confusion Matrix will be used to evaluation the proposed classifier.

CRF Based Intrusion Detection System using Genetic Search Feature Selection for NSSA

  • Azhagiri M;Rajesh A;Rajesh P;Gowtham Sethupathi M
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.131-140
    • /
    • 2023
  • Network security situational awareness systems helps in better managing the security concerns of a network, by monitoring for any anomalies in the network connections and recommending remedial actions upon detecting an attack. An Intrusion Detection System helps in identifying the security concerns of a network, by monitoring for any anomalies in the network connections. We have proposed a CRF based IDS system using genetic search feature selection algorithm for network security situational awareness to detect any anomalies in the network. The conditional random fields being discriminative models are capable of directly modeling the conditional probabilities rather than joint probabilities there by achieving better classification accuracy. The genetic search feature selection algorithm is capable of identifying the optimal subset among the features based on the best population of features associated with the target class. The proposed system, when trained and tested on the bench mark NSL-KDD dataset exhibited higher accuracy in identifying an attack and also classifying the attack category.

A hybrid deep neural network compression approach enabling edge intelligence for data anomaly detection in smart structural health monitoring systems

  • Tarutal Ghosh Mondal;Jau-Yu Chou;Yuguang Fu;Jianxiao Mao
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.179-193
    • /
    • 2023
  • This study explores an alternative to the existing centralized process for data anomaly detection in modern Internet of Things (IoT)-based structural health monitoring (SHM) systems. An edge intelligence framework is proposed for the early detection and classification of various data anomalies facilitating quality enhancement of acquired data before transmitting to a central system. State-of-the-art deep neural network pruning techniques are investigated and compared aiming to significantly reduce the network size so that it can run efficiently on resource-constrained edge devices such as wireless smart sensors. Further, depthwise separable convolution (DSC) is invoked, the integration of which with advanced structural pruning methods exhibited superior compression capability. Last but not least, quantization-aware training (QAT) is adopted for faster processing and lower memory and power consumption. The proposed edge intelligence framework will eventually lead to reduced network overload and latency. This will enable intelligent self-adaptation strategies to be employed to timely deal with a faulty sensor, minimizing the wasteful use of power, memory, and other resources in wireless smart sensors, increasing efficiency, and reducing maintenance costs for modern smart SHM systems. This study presents a theoretical foundation for the proposed framework, the validation of which through actual field trials is a scope for future work.

Efficient Recognition of Easily-confused Chinese Herbal Slices Images Using Enhanced ResNeSt

  • Qi Zhang;Jinfeng Ou;Huaying Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2103-2118
    • /
    • 2024
  • Chinese herbal slices (CHS) automated recognition based on computer vision plays a critical role in the practical application of intelligent Chinese medicine. Due to the complexity and similarity of herbal images, identifying Chinese herbal slices is still a challenging task. Especially, easily-confused CHS have higher inter-class and intra-class complexity and similarity issues, the existing deep learning models are less adaptable to identify them efficiently. To comprehensively address these problems, a novel tiny easily-confused CHS dataset has been built firstly, which includes six pairs of twelve categories with about 2395 samples. Furthermore, we propose a ResNeSt-CHS model that combines multilevel perception fusion (MPF) and perceptive sparse fusion (PSF) blocks for efficiently recognizing easilyconfused CHS images. To verify the superiority of the ResNeSt-CHS and the effectiveness of our dataset, experiments have been employed, validating that the ResNeSt-CHS is optimal for easily-confused CHS recognition, with 2.1% improvement of the original ResNeSt model. Additionally, the results indicate that ResNeSt-CHS is applied on a relatively small-scale dataset yet high accuracy. This model has obtained state-of-the-art easily-confused CHS classification performance, with accuracy of 90.8%, far beyond other models (EfficientNet, Transformer, and ResNeSt, etc) in terms of evaluation criteria.

Mitigating Mobile Malware Threats: Implementing Gaussian Naïve Bayes for Effective Banking Trojan Detection

  • Najiahtul Syafiqah Ismail;Anis Athirah Masmuhallim;Mohd Talmizie Amron;Fazlin Marini Hussain;Nadiathul Raihana Ismail
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.17-24
    • /
    • 2024
  • Mobile phones have become immensely popular as intelligent terminals worldwide. The open-source nature of mobile platforms has facilitated the development of third-party mobile applications, but it has also created an environment for mobile malware to thrive. Unfortunately, the abundance of mobile applications and lax management of some app stores has led to potential risks for mobile users, including privacy breaches and malicious deductions of fees, among other adverse consequences. This research presents a mobile malware static detection method based on Gaussian Naïve Bayes. The approach aims to offer a solution to protect users from potential threats such as Banking Trojan malware. The objectives of this project are to study the requirement of the Naïve Bayes algorithm in Mobile Banking Trojan detection, and to evaluate the performance and accuracy of the Gaussian Naïve Bayes algorithm in the Mobile Banking Trojan detection. This study presents a mobile banking trojan detection system utilizing the Gaussian Naïve Bayes algorithm, achieving a high classification accuracy of 95.83% in distinguishing between benign and trojan APK files.

Multi-classifier Decision-level Fusion for Face Recognition (다중 분류기의 판정단계 융합에 의한 얼굴인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • Face classification has wide applications in intelligent video surveillance, content retrieval, robot vision, and human-machine interface. Pose and expression changes, and arbitrary illumination are typical problems for face recognition. When the face is captured at a distance, the image quality is often degraded by blurring and noise corruption. This paper investigates the efficacy of multi-classifier decision level fusion for face classification based on the photon-counting linear discriminant analysis with two different cost functions: Euclidean distance and negative normalized correlation. Decision level fusion comprises three stages: cost normalization, cost validation, and fusion rules. First, the costs are normalized into the uniform range and then, candidate costs are selected during validation. Three fusion rules are employed: minimum, average, and majority-voting rules. In the experiments, unfocusing and motion blurs are rendered to simulate the effects of the long distance environments. It will be shown that the decision-level fusion scheme provides better results than the single classifier.

Performance Evaluations for Leaf Classification Using Combined Features of Shape and Texture (형태와 텍스쳐 특징을 조합한 나뭇잎 분류 시스템의 성능 평가)

  • Kim, Seon-Jong;Kim, Dong-Pil
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • There are many trees in a roadside, parks or facilities for landscape. Although we are easily seeing a tree in around, it would be difficult to classify it and to get some information about it, such as its name, species and surroundings of the tree. To find them, you have to find the illustrated books for plants or search for them on internet. The important components of a tree are leaf, flower, bark, and so on. Generally we can classify the tree by its leaves. A leaf has the inherited features of the shape, vein, and so on. The shape is important role to decide what the tree is. And texture included in vein is also efficient feature to classify them. This paper evaluates the performance of a leaf classification system using both shape and texture features. We use Fourier descriptors for shape features, and both gray-level co-occurrence matrices and wavelets for texture features, and used combinations of such features for evaluation of images from the Flavia dataset. We compared the recognition rates and the precision-recall performances of these features. Various experiments showed that a combination of shape and texture gave better results for performance. The best came from the case of a combination of features of shape and texture with a flipped contour for a Fourier descriptor.

A Study on GIS Component Classification considering Functional/Non-Functional Elements (기능적/비기능적 요소를 고려한 GIS 컴포넌트 분류에 관한 연구)

  • Jo, Yun-Won;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.3
    • /
    • pp.77-86
    • /
    • 2002
  • Recently software industry in GIS(geographic information system) becomes an interesting issue by performing a large scale of national GIS application development as well as even small unit of FMS(facility management system). Also, there exist many cases to combine GIS with various business domains such as MIS(marketing information system), CNS(car navigation system) and ITS(intelligent transportation system). In this situation, in order to develop an efficient and useful GIS application for a short term, there must be a deep consideration of not only developing GIS component but also managing GIS component. In fact, even though there exist many certain components having high reusability, excellent interoperability and good quality, their reusability may be reduced because of their difficulty to access in a certain repository. Therefore, it is important to classify components having common characteristic based on their particular rule with reflecting their functionality and non-functionality before cataloging them. Here, there are two non-functional classification categories discussed such as GIS content-dependent metadata and GIS content-independent metadata. This cataloged components will help application developers to select easily their desired components. Moreover, new components may be easily producted by modifying and combining previous components. Finally, the original goal of all this effort can be defined through obtaining high reusability and interoperability of GIS component.

  • PDF