• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.021 seconds

Image Contrast Enhancement Technique Using Clustering Algorithm (클러스터링 알고리듬을 이용한 영상 대비 향상 기법)

  • Kim, Nam-Jin;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.310-315
    • /
    • 2004
  • Image taken in the night can be low-contrast images because of poor environment and image transmission. We propose an algorithm that improves the acquired low-contrast image. MPEG-2 separates chrominance and illuminance, and compresses respectively because human vision is more sensitive to luminance. We extracted illumination and used K-means algorithm to find a proper crossover point automatically. We used K-means algorithm in the viewpoint that the problem of crossover point selection can be considered as the two-category classification problem. We divided an image into two subimages using the crossover point, and applied the histogram equalization method respectively. We used the index of fuzziness to evaluate the degree of improvement. We compare the results of the proposed method with those of other methods.

Combining Radar and Rain Gauge Observations Utilizing Gaussian-Process-Based Regression and Support Vector Learning (가우시안 프로세스 기반 함수근사와 서포트 벡터 학습을 이용한 레이더 및 강우계 관측 데이터의 융합)

  • Yoo, Chul-Sang;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.297-305
    • /
    • 2008
  • Recently, kernel methods have attracted great interests in the areas of pattern classification, function approximation, and anomaly detection. The role of the kernel is particularly important in the methods such as SVM(support vector machine) and KPCA(kernel principal component analysis), for it can generalize the conventional linear machines to be capable of efficiently handling nonlinearities. This paper considers the problem of combining radar and rain gauge observations utilizing the regression approach based on the kernel-based gaussian process and support vector learning. The data-assimilation results of the considered methods are reported for the radar and rain gauge observations collected over the region covering parts of Gangwon, Kyungbuk, and Chungbuk provinces of Korea, along with performance comparison.

Method that determining the Hyperparameter of CNN using HS algorithm (HS 알고리즘을 이용한 CNN의 Hyperparameter 결정 기법)

  • Lee, Woo-Young;Ko, Kwang-Eun;Geem, Zong-Woo;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • The Convolutional Neural Network(CNN) can be divided into two stages: feature extraction and classification. The hyperparameters such as kernel size, number of channels, and stride in the feature extraction step affect the overall performance of CNN as well as determining the structure of CNN. In this paper, we propose a method to optimize the hyperparameter in CNN feature extraction stage using Parameter-Setting-Free Harmony Search (PSF-HS) algorithm. After setting the overall structure of CNN, hyperparameter was set as a variable and the hyperparameter was optimized by applying PSF-HS algorithm. The simulation was conducted using MATLAB, and CNN learned and tested using mnist data. We update the parameters for a total of 500 times, and it is confirmed that the structure with the highest accuracy among the CNN structures obtained by the proposed method classifies the mnist data with an accuracy of 99.28%.

Estimation of Mass Rapid Transit Passenger's Train Choice Using a Mixture Distribution Analysis (통행시간 기반 혼합분포모형 분석을 통한 도시철도 승객의 급행 탑승 여부 추정 연구)

  • Jang, Jinwon;Yoon, Hosang;Park, Dongjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.1-17
    • /
    • 2021
  • Identifying the exact train and the type of train boarded by passengers is practically cumbersome. Previous studies identified the trains boarded by each passenger by matching the Automated Fare Collection (AFC) data and the train schedule diagram. However, this approach has been shown to be inefficient as the exact train boarded by a considerable number of passengers cannot be accurately determined. In this study, we demonstrate that the AFC data - diagram matching technique could not estimate 28% of the train type selected by passengers using the Seoul Metro line no.9. To obtain more accurate results, this paper developed a two-step method for estimating the train type boarded by passengers by applying the AFC data - diagram matching method followed by a mixture distribution analysis. As a result of the analysis, we derived reasonable express train use/non-use passenger classification points based on 298 origin-destination pairs that satisfied the verification criteria of this study.

Time Synchronization Technique for GNSS Jamming Monitoring Network System (GNSS 재밍 신호 모니터링 네트워크 시스템을 위한 독립된 GNSS 수신기 간 시각 동기화 기법)

  • Jin, Gwon gyu;Song, Young jin;Won, Jong hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2021
  • Global Navigation Satellite System (GNSS) receivers are intrinsically vulnerable to radio frequency jamming signals due to the fundamental property of radio navigation systems. A GNSS jamming monitoring system that is capable of jamming detection, classification and localization is essential for infrastructure for autonomous driving systems. For these 3 functionalities, a GNSS jamming monitoring network consisting of a multiple of low-cost GNSS receivers distributed in a certain area is needed, and the precise time synchronizaion between multiple independent GNSS receivers in the network is an essential element. This paper presents a precise time synchronization method based on the direct use of Time Difference of Arrival (TDOA) technique in signal domain. A block interpolation method is additionally incorporated into the method in order to maintain the precision of time synchronization even with the relatively low sampling rate of the received signals for computational efficiency. The feasibility of the proposed approach is verified in the numerical simualtions.

Temperature Measurement and Intelligent Access Management System Service Platform Advancement Research using AI Facial Recognition Technology (AI 얼굴정보처리기술을 활용한 체온측정 및 지능형 출입관리 시스템 서비스플랫폼 고도화 연구)

  • Kim, Byung-Wan
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.7
    • /
    • pp.249-257
    • /
    • 2021
  • Recently, interest and demand for facial information processing technology that can provide non-face-to-face identity authentication and access management service using smart devices, which is an essential environmental improvement for multi-use facilities, is increasing as a way to prevent the spread of infectious diseases worldwide and to cope with social measures. This study defines a multi-use facility classification system and applied service field to establish a continuous access control system, and measures to improve the usability of the service platform considering scalability through a dual access control system and personal/measurement information type analysis, and accordingly We would like to propose a service roadmap. In addition, it aims to improve the physical access management system service platform, which is a multi-use facility application service that requires one-time and multiple-use authentication according to usage. It is expected that the methodology of this study can be applied as a service platform of a logical access control system type in the future.

Development of a Model for Calculating the Negligence Ratio Using Traffic Accident Information (교통사고 정보를 이용한 과실비율 산정 모델 개발)

  • Eum Han;Giok Park;Heejin Kang;Yoseph Lee;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.36-56
    • /
    • 2022
  • Traffic accidents occur in Korea are calculated with the 「Automobile Accident Negligence Ratio Certification Standard」 prepared by the 'General Insurance Association of Korea' and the insurance company's agreement or judgment is made. However, disputes are frequently occurring in calculating the negligence ratio. Therefore, it is thought that a more effective response would be possible if accident type according to the standard could be quickly identified using traffic accident information prepared by police. Therefore, this study aims to develop a model that learns the accident information prepared by the police and classifies it to match the accident type in the standard. In particular, through data mining, keywords necessary to classify the accident types of the standard were extracted from the accident data of the police. Then, models were developed to derive the types of accidents by learning the extracted keywords through decision trees and random forest models.

Development of Functional Scenarios for Automated Vehicle Assessment : Focused on Tollgate and Ramp Sections (자율주행차 평가용 상황 시나리오 개발 : 톨게이트, 램프 구간을 중심으로)

  • Jongmin Noh;Woori Ko;Joong Hyo Kim;Seok Jin Oh;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.250-265
    • /
    • 2022
  • Positive effects such as significantly reducing traffic accidents caused by human error can be expected by the introduction of Automated vehicles (AV). However, as new traffic safety issues are expected to occur in the future due to errors in H/W or S/W of autonomous vehicles and lack of its function, it is necessary to establish a scenario to evaluate the driving safety of AV. Therefore, in this study, functional scenario was developed to evaluate the driving safety of AV based on traffic accident data of the National Police Agency. Using the GIS program, QGIS, traffic accident data that occurred in the toll gate and ramp sections of expressway were extracted and accident summary items were checked to classify the types of accident. In addition, based on the results of accident type classification, functional scenario were developed that contains various dangerous situations in the tollgate and ramp sections.

A Study on the Development and Standard Specification of Unmanned Traffic Enforcement Equipment for Two-Wheeled Vehicles (이륜차 무인교통단속장비 개발 및 표준규격 연구)

  • Byung chul In;Seong jun Yoo;Eum Han;Kyeongjin Lee;Sungho Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.126-142
    • /
    • 2023
  • The purpose of this study is to develop unmanned traffic enforcement equipment and standard specifications for the prevention of traffic accidents and violations of the two-wheeled vehicle laws. To this end, we conducted a review of the problems and new technologies of the currently operating unmanned traffic enforcement equipment on two-wheeled vehicles. And through a survey, the feasibility of introducing unmanned traffic enforcement equipment for two-wheeled vehicles and the current status of technology were investigated. In addition, the two-wheeled vehicle enforcement function was implemented through field tests of the development equipment, and the addition of enforcement targets and the number recognition rate were improved through performance improvement. Based on the results of field experiments and performance evaluation, performance standards for unmanned two-wheeled vehicle traffic enforcement equipment were prepared, and in the communication protocol, two-wheeled vehicle-related matters were newly composed in the vehicle classification code and violation items to develop standards.

A Study on the Visiting Areas Classification of Cargo Vehicles Using Dynamic Clustering Method (화물차량의 방문시설 공간설정 방법론 연구)

  • Bum Chul Cho;Eun A Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.141-156
    • /
    • 2023
  • This study aims to improve understanding of freight movement, crucial for logistics facility investment and policy making. It addresses the limitations of traditional freight truck traffic data, aggregated only at city and county levels, by developing a new methodology. This method uses trip chain data for more detailed, facility-level analysis of freight truck movements. It employs DTG (Digital Tachograph) data to identify individual truck visit locations and creates H3 system-based polygons to represent these visits spatially. The study also involves an algorithm to dynamically determine the optimal spatial resolution of these polygons. Tested nationally, the approach resulted in polygons with 81.26% spatial fit and 14.8% error rate, offering insights into freight characteristics and enabling clustering based on traffic chain characteristics of freight trucks and visited facility types.