• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.021 seconds

FUZZY LOGIC KNOWLEDGE SYSTEMS AND ARTIFICIAL NEURAL NETWORKS IN MEDICINE AND BIOLOGY

  • Sanchez, Elie
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.9-25
    • /
    • 1991
  • This tutorial paper has been written for biologists, physicians or beginners in fuzzy sets theory and applications. This field is introduced in the framework of medical diagnosis problems. The paper describes and illustrates with practical examples, a general methodology of special interest in the processing of borderline cases, that allows a graded assignment of diagnoses to patients. A pattern of medical knowledge consists of a tableau with linguistic entries or of fuzzy propositions. Relationships between symptoms and diagnoses are interpreted as labels of fuzzy sets. It is shown how possibility measures (soft matching) can be used and combined to derive diagnoses after measurements on collected data. The concepts and methods are illustrated in a biomedical application on inflammatory protein variations. In the case of poor diagnostic classifications, it is introduced appropriate ponderations, acting on the characterizations of proteins, in order to decrease their relative influence. As a consequence, when pattern matching is achieved, the final ranking of inflammatory syndromes assigned to a given patient might change to better fit the actual classification. Defuzzification of results (i.e. diagnostic groups assigned to patients) is performed as a non fuzzy sets partition issued from a "separating power", and not as the center of gravity method commonly employed in fuzzy control. It is then introduced a model of fuzzy connectionist expert system, in which an artificial neural network is designed to build the knowledge base of an expert system, from training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the connections: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through MIN-MAX fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feed forward network is described and illustrated in the same biomedical domain as in the first part.

  • PDF

Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization (PSO 알고리즘을 이용한 퍼지 Extreme Learning Machine 최적화)

  • Roh, Seok-Beom;Wang, Jihong;Kim, Yong-Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • In this paper, optimization technique such as particle swarm optimization was used to optimize the parameters of fuzzy Extreme Learning Machine. While the learning speed of conventional neural networks is very slow, that of Extreme Learning Machine is very fast. Fuzzy Extreme Learning Machine is composed of the Extreme Learning Machine with very fast learning speed and fuzzy logic which can represent the linguistic information of the field experts. The general sigmoid function is used for the activation function of Extreme Learning Machine. However, the activation function of Fuzzy Extreme Learning Machine is the membership function which is defined in the procedure of fuzzy C-Means clustering algorithm. We optimize the parameters of the membership functions by using optimization technique such as Particle Swarm Optimization. In order to validate the classification capability of the proposed classifier, we make several experiments with the various machine learning datas.

Design of a Real-time Algorithm for the Recognition of Speed Limit Signs Using DCT Coefficients (DCT 계수를 이용한 속도 제한 표지판 인식 실시간 알고리듬의 설계)

  • Kang, Byoung-Hwi;Cho, Han-Min;Kim, Jae-Young;Hwang, Sun-Young;Kim, Kwang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1766-1774
    • /
    • 2010
  • This paper proposes a real-time algorithm of recognizing speed limit signs for intelligent vehicles. Contrary to previous works which use all the pixel values in the ROI (Region Of Interest) after preprocessing image at ROI and need a lot of operations, the proposed algorithm uses fewer DCT coefficients in the ROI as features of each image to reduce the number of operations. Choosing a portion of DCT coefficients which satisfy discriminant criteria for recognition, the proposed algorithm recognizes the speed limit signs using the information obtained in the selected features through LDA and MD. It selects one having the highest probability among the recognition results calculated by accumulating the classification results of consecutive individual frames. Experimental results show that the recognition rate for consecutive frames reaches to 100% with test images. When compared with the previous algorithm, the numbers of multiply and add operations are reduced by 58.6% and 38.3%, respectively.

A Fuzzy Clustering Algorithm for Clustering Categorical Data (범주형 데이터의 분류를 위한 퍼지 군집화 기법)

  • Kim, Dae-Won;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.661-666
    • /
    • 2003
  • In this paper, the conventional k-modes and fuzzy k-modes algorithms for clustering categorical data is extended by representing the clusters of categorical data with fuzzy centroids instead of the hard-type centroids used in the original algorithm. The hard-type centroids of the traditional algorithms had difficulties in dealing with ambiguous boundary data, which might be misclassified and lead to thelocal optima. Use of fuzzy centroids makes it possible to fully exploit the power of fuzzy sets in representing the uncertainty in the classification of categorical data. The distance measure between data and fuzzy centroids is more precise and effective than those of the k-modes and fuzzy k-modes. To test the proposed approach, the proposed algorithm and two conventional algorithms were used to cluster three categorical data sets. The proposed method was found to give markedly better clustering results.

Multi-channel input-based non-stationary noise cenceller for mobile devices (이동형 단말기를 위한 다채널 입력 기반 비정상성 잡음 제거기)

  • Jeong, Sang-Bae;Lee, Sung-Doke
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.945-951
    • /
    • 2007
  • Noise cancellation is essential for the devices which use speech as an interface. In real environments, speech quality and recognition rates are degraded by the auditive noises coming near the microphone. In this paper, we propose a noise cancellation algorithm using stereo microphones basically. The advantage of the use of multiple microphones is that the direction information of the target source could be applied. The proposed noise canceller is based on the Wiener filter. To estimate the filter, noise and target speech frequency responses should be known and they are estimated by the spectral classification in the frequency domain. The performance of the proposed algorithm is compared with that of the well-known Frost algorithm and the generalized sidelobe canceller (GSC) with an adaptation mode controller (AMC). As performance measures, the perceptual evaluation of speech quality (PESQ), which is the most widely used among various objective speech quality methods, and speech recognition rates are adopted.

Vision-Based Fast Detection System for Tunnel Incidents (컴퓨터 시각을 이용한 고속 터널 유고감지 시스템)

  • Lee, Hee-Sin;Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • Our country has so large mountain area that the tunnel construction is inevitable and the need of incident detection that provides safe management of tunnels is increasing. In this paper, we suggest a tunnel incident detection system using computer vision techniques, which can detect the incidents in a tunnel and provides the information to the tunnel administrative office in order to help safe tunnel operation. The suggested system enhances the processing speed by using simple processing algorithm such as image subtraction, and ensures the accuracy of the system by focused on the incident detection itself rather than its classification. The system is also cost effective because the video data from 4 cameras can be simultaneously analyzed in a single PC-based system. Our system can be easily extended because the PC-based analyzer can be increased according to the number of cameras in a tunnel. Also our web-based structure is useful to connect the other remotely located tunnel incident systems to obtain interoperability between tunnels. Through the experiments the system has successfully detected the incidents in real time including dropped luggage, stoped car, traffic congestion, man walker or bicycle, smoke or fire, reverse driving, etc.

An Image Contrast Enhancement Technique Using the Improved Integrated Adaptive Fuzzy Clustering Model (개선된 IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved IAFC model is used to classify the image into two classes. The proposed method is applied to several experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

Document Summarization Using Mutual Recommendation with LSA and Sense Analysis (LSA를 이용한 문장 상호 추천과 문장 성향 분석을 통한 문서 요약)

  • Lee, Dong-Wook;Baek, Seo-Hyeon;Park, Min-Ji;Park, Jin-Hee;Jung, Hye-Wuk;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.656-662
    • /
    • 2012
  • In this paper, we describe a new summarizing method based on a graph-based and a sense-based analysis. In the graph-based analysis, we convert sentences in a document into word vectors and calculate the similarity between each sentence using LSA. We reflect this similarity of sentences and the rarity scores of words in sentences to define weights of edges in the graph. Meanwhile, in the sense-based analysis, in order to determine the sense of words, subjectivity or objectivity, we built a database which is extended from the golden standards using Wordnet. We calculate the subjectivity of sentences from the sense of words, and select more subjective sentences. Lastly, we combine the results of these two methods. We evaluate the performance of the proposed method using classification games, which are usually used to measure the performances of summarization methods. We compare our method with the MS-Word auto-summarization, and verify the effectiveness of ours.

Gait-based Human Identification System using Eigenfeature Regularization and Extraction (고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템)

  • Lee, Byung-Yun;Hong, Sung-Jun;Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • In this paper, we propose a gait-based human identification system using eigenfeature regularization and extraction (ERE). First, a gait feature for human identification which is called gait energy image (GEI) is generated from walking sequences acquired from a camera sensor. In training phase, regularized transformation matrix is obtained by applying ERE to the gallery GEI dataset, and the gallery GEI dataset is projected onto the eigenspace to obtain galley features. In testing phase, the probe GEI dataset is projected onto the eigenspace created in training phase and determine the identity by using a nearest neighbor classifier. Experiments are carried out on the CASIA gait dataset A to evaluate the performance of the proposed system. Experimental results show that the proposed system is better than previous works in terms of correct classification rate.

A Personalized Hand Gesture Recognition System using Soft Computing Techniques (소프트 컴퓨팅 기법을 이용한 개인화된 손동작 인식 시스템)

  • Jeon, Moon-Jin;Do, Jun-Hyeong;Lee, Sang-Wan;Park, Kwang-Hyun;Bien, Zeung-Nam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 2008
  • Recently, vision-based hand gesture recognition techniques have been developed for assisting elderly and disabled people to control home appliances. Frequently occurred problems which lower the hand gesture recognition rate are due to the inter-person variation and intra-person variation. The recognition difficulty caused by inter-person variation can be handled by using user dependent model and model selection technique. And the recognition difficulty caused by intra-person variation can be handled by using fuzzy logic. In this paper, we propose multivariate fuzzy decision tree learning and classification method for a hand motion recognition system for multiple users. When a user starts to use the system, the most appropriate recognition model is selected and used for the user.