• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.022 seconds

Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.

An Intelligent Display Scheme of Soccer Video for Multimedia Mobile Devices (멀티미디어 이동형 단말을 위한 축구경기 비디오의 지능적 디스플레이 방법)

  • Seo Kee-Won;Kim Chang-Ick
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.207-221
    • /
    • 2006
  • A fully automatic and computationally efficient method is proposed for intelligent display of soccer video on small multimedia mobile devices. The rapid progress of the multimedia signal processing has contributed to the extensive use of multimedia devices with a small LCD panel. With these emerging small mobile devices, the video sequences captured for standard- or HDTV broadcasting may give the small-display-viewers uncomfortable experiences in understanding what is happening in a scene. For instance, in a soccer video sequence taken by a long-shot camera technique, the tiny objects (e.g., soccer ball and players) may not be clearly viewed on the small LCD panel. Thus, an intelligent display technique is needed for small-display-viewers. To this end, one of the key technologies is to determine region of interest (ROI), which is a part of the scene that viewers pay more attention to than other regions. In this paper, the focus is on soccer video display for mobile devices. Instead of taking visual saliency into account, we take domain-specific approach to exploit the characteristics of the soccer video. The proposed scheme includes three modules; ground color learning, shot classification, and ROI determination. The experimental results show the propose scheme is capable of intelligent video display on mobile devices.

Development of an Intelligent Illegal Gambling Site Detection Model Based on Tag2Vec (Tag2vec 기반의 지능형 불법 도박 사이트 탐지 모형 개발)

  • Song, ChanWoo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.211-227
    • /
    • 2022
  • Illegal gambling through online gambling sites has become a significant social problem. The development of Internet technology and the spread of smartphones have led to the proliferation of illegal gambling sites, so now illegal online gambling has become accessible to anyone. In order to mitigate its negative effect, the Korean government is trying to detect illegal gambling sites by using self-monitoring agents or reporting systems such as 'Nuricops.' However, it is difficult to detect all illegal sites due to limitations such as a lack of staffing. Accordingly, several scholars have proposed intelligent illegal gambling site detection techniques. Xu et al. (2019) found that fake or illegal websites generally have unique features in the HTML tag structure. It implies that the HTML tag structure can be important for detecting illegal sites. However, prior studies to improve the model's performance by utilizing the HTML tag structure in the illegal site detection model are rare. Against this background, our study aimed to improve the model's performance by utilizing the HTML tag structure and proposes Tag2Vec, a modified version of Doc2Vec, as a methodology to vectorize the HTML tag structure properly. To validate the proposed model, we perform the empirical analysis using a data set consisting of the list of harmful sites from 'The Cheat' and normal sites through Google search. As a result, it was confirmed that the Tag2Vec-based detection model proposed in this study showed better classification accuracy, recall, and F1_Score than the URL-based detection model-a comparative model. The proposed model of this study is expected to be effectively utilized to improve the health of our society through intelligent technology.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

A Study on Measuring Vehicle Length Using Laser Rangefinder (레이저 거리계를 이용한 차량 전장 측정 방법에 관한 연구)

  • Ryu, In-Hwan;Kwon, Jang-Woo;Lee, Sang-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.66-76
    • /
    • 2016
  • Determination of type of a vehicle is being used in various areas such as collecting tolls, collecting statistical traffic data and traffic prognosis. Because most of the vehicle type classification systems depend on vehicle length indirectly or directly, highly reliable automatic vehicle length measurement system is crucial for them. This study makes use of a pencil beam laser rangemeter and devises a mechanical device which rotates the laser rangemeter. The implemented system measures the range between a point and the laser rangemeter then indicates it as a spherical coordinate. We obtain several silhouettes of cross section of the vehicle, the rate of change of the silhouettes, signs of the rates then squares the rates to apply cell averaging constant false alarm rate (CA-CFAR) technique to find out where the border is between the vehicle and the background. Using the border and trigonometry, we calculated the length of the vehicle and confirmed that the calculated vehicle length is about 94% of actual length.

Classification of Traffic Information Announcement Considering Cognitive Characteristics for Traffic Situations (교통상황별 인지특성을 고려한 교통정보 방송멘트의 분류에 관한 연구)

  • Hwang, Seong-Min;Lee, Byung-Joo;Suh, Seung-Hwan;Sung, Soo-Lyeon;NamGung, Moon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.1-11
    • /
    • 2010
  • Traffic broadcasting is using a usual traffic information announcement when giving its information to users on the road and for the provision of information useful to drivers, a clear criteria of how to judge with information from informers needs to be established from the perspective of users. In this study, to give some available criteria for current announcement which often causes confusion, cognitive characteristics were investigated and analyzed based on judgment criteria which are commonly felt by correspondents, participants in traffic broadcasting and drivers. The result requires the provision of information that is relied on an average speed where drivers feel little cognitive difference and found a classification where a smooth traffic flow is more than 60km/h, going slow 40~60km/h and congested state less than 40km/h respectively. And from the study of 35 traffic information announcement for different traffic situations, 8 cases of smooth state and 9 cases of congested state were clearly classified but the rest 18 cases of comment were ambiguously perceived by drivers and which requires the necessity of a announcement that uses directly the word of 'smooth', 'slow', and 'congestion' in the actual expression of slow driving. The future study should be focused on the establishment of more definite criteria by representation of nearly real traffic flow, provision of traffic information announcement and the analysis of cognitive response through car dynamic simulators and the kinds.

Development of Mirror Neuron System-based BCI System using Steady-State Visually Evoked Potentials (정상상태시각유발전위를 이용한 Mirror Neuron System 기반 BCI 시스템 개발)

  • Lee, Sang-Kyung;Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • Steady-State Visually Evoked Potentials (SSVEP) are natural response signal associated with the visual stimuli with specific frequency. By using SSVEP, occipital lobe region is electrically activated as frequency form equivalent to stimuli frequency with bandwidth from 3.5Hz to 75Hz. In this paper, we propose an experimental paradigm for analyzing EEGs based on the properties of SSVEP. At first, an experiment is performed to extract frequency feature of EEGs that is measured from the image-based visual stimuli associated with specific objective with affordance and object-related affordance is measured by using mirror neuron system based on the frequency feature. And then, linear discriminant analysis (LDA) method is applied to perform the online classification of the objective pattern associated with the EEG-based affordance data. By using the SSVEP measurement experiment, we propose a Brain-Computer Interface (BCI) system for recognizing user's inherent intentions. The existing SSVEP application system, such as speller, is able to classify the EEG pattern based on grid image patterns and their variations. However, our proposed SSVEP-based BCI system performs object pattern classification based on the matters with a variety of shapes in input images and has higher generality than existing system.

Face Tracking and Recognition in Video with PCA-based Pose-Classification and (2D)2PCA recognition algorithm (비디오속의 얼굴추적 및 PCA기반 얼굴포즈분류와 (2D)2PCA를 이용한 얼굴인식)

  • Kim, Jin-Yul;Kim, Yong-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.423-430
    • /
    • 2013
  • In typical face recognition systems, the frontal view of face is preferred to reduce the complexity of the recognition. Thus individuals may be required to stare into the camera, or the camera should be located so that the frontal images are acquired easily. However these constraints severely restrict the adoption of face recognition to wide applications. To alleviate this problem, in this paper, we address the problem of tracking and recognizing faces in video captured with no environmental control. The face tracker extracts a sequence of the angle/size normalized face images using IVT (Incremental Visual Tracking) algorithm that is known to be robust to changes in appearance. Since no constraints have been imposed between the face direction and the video camera, there will be various poses in face images. Thus the pose is identified using a PCA (Principal Component Analysis)-based pose classifier, and only the pose-matched face images are used to identify person against the pre-built face DB with 5-poses. For face recognition, PCA, (2D)PCA, and $(2D)^2PCA$ algorithms have been tested to compute the recognition rate and the execution time.

Design of Automatic Classification System of Black Plastics Based on Support Vector Machine Using Raman Spectroscopy (라만분광법을 이용한 SVM 기반 흑색 플라스틱 자동 분류 시스템의 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.416-422
    • /
    • 2016
  • Lots of plastics are widely used in a variety of industrial field. And the amount of plastic waste is massively produced. In the study of waste recycling, it is emerged as an important issue to prevent the waste of potentially useful resource materials as well as to reduce ecological damage. So, the recycling of plastic waste has been currently paid attention to from the view point of reuse. Existing automatic sorting system consist of near infrared ray (NIR) sensors to classify the types of plastics. But the classification of black plastics still remains a challenge. Black plastics which contains carbon black are not almost classified by NIR because of the characteristic of the light absorption of black plastics. This study is focused on handling how to identify black plastics instead of NIR. Raman spectroscopy is used to get qualitative as well as quantitative analysis of black plastics. In order to improve the performance of identification, Support Vector Machine(SVM) classifier and Principal Component Analysis(PCA) are exploited to more preferably classify some kinds of the black plastics, and to analyze the characteristic of each data.

A Classification Model for Attack Mail Detection based on the Authorship Analysis (작성자 분석 기반의 공격 메일 탐지를 위한 분류 모델)

  • Hong, Sung-Sam;Shin, Gun-Yoon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.35-46
    • /
    • 2017
  • Recently, attackers using malicious code in cyber security have been increased by attaching malicious code to a mail and inducing the user to execute it. Especially, it is dangerous because it is easy to execute by attaching a document type file. The author analysis is a research area that is being studied in NLP (Neutral Language Process) and text mining, and it studies methods of analyzing authors by analyzing text sentences, texts, and documents in a specific language. In case of attack mail, it is created by the attacker. Therefore, by analyzing the contents of the mail and the attached document file and identifying the corresponding author, it is possible to discover more distinctive features from the normal mail and improve the detection accuracy. In this pager, we proposed IADA2(Intelligent Attack mail Detection based on Authorship Analysis) model for attack mail detection. The feature vector that can classify and detect attack mail from the features used in the existing machine learning based spam detection model and the features used in the author analysis of the document and the IADA2 detection model. We have improved the detection models of attack mails by simply detecting term features and extracted features that reflect the sequence characteristics of words by applying n-grams. Result of experiment show that the proposed method improves performance according to feature combinations, feature selection techniques, and appropriate models.