• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.03 seconds

Neural Network-based Decision Class Analysis with Incomplete Information

  • 김재경;이재광;박경삼
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.281-287
    • /
    • 1999
  • Decision class analysis (DCA) is viewed as a classification problem where a set of input data (situation-specific knowledge) and output data(a topological leveled influence diagram (ID)) is given. Situation-specific knowledge is usually given from a decision maker (DM) with the help of domain expert(s). But it is not easy for the DM to know the situation-specific knowledge of decision problem exactly. This paper presents a methodology for sensitivity analysis of DCA under incomplete information. The purpose of sensitivity analysis in DCA is to identify the effects of incomplete situation-specific frames whose uncertainty affects the importance of each variable in the resulting model. For such a purpose, our suggested methodology consists of two procedures: generative procedure and adaptive procedure. An interactive procedure is also suggested based the sensitivity analysis to build a well-formed ID. These procedures are formally explained and illustrated with a raw material purchasing problem.

  • PDF

Speech Emotion Recognition on a Simulated Intelligent Robot (모의 지능로봇에서의 음성 감정인식)

  • Jang Kwang-Dong;Kim Nam;Kwon Oh-Wook
    • MALSORI
    • /
    • no.56
    • /
    • pp.173-183
    • /
    • 2005
  • We propose a speech emotion recognition method for affective human-robot interface. In the Proposed method, emotion is classified into 6 classes: Angry, bored, happy, neutral, sad and surprised. Features for an input utterance are extracted from statistics of phonetic and prosodic information. Phonetic information includes log energy, shimmer, formant frequencies, and Teager energy; Prosodic information includes Pitch, jitter, duration, and rate of speech. Finally a pattern classifier based on Gaussian support vector machines decides the emotion class of the utterance. We record speech commands and dialogs uttered at 2m away from microphones in 5 different directions. Experimental results show that the proposed method yields $48\%$ classification accuracy while human classifiers give $71\%$ accuracy.

  • PDF

The application of the ubiquitous system in the interior architectural environment (실내 건축 환경에서 있어서 유비쿼터스의 적용)

  • Chung, Hyo-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2097_2098
    • /
    • 2009
  • 'Ubiquitous' based on progressive development of IT technology is a new paradigm of the 21th century. In terms of rapid social and technological change, the architectural environment has been changed by computer networking system. According to the condition of the IT business, interior architectural space has been needed to consider applying IT technology for intelligent living environment. To develop the most appropriate architectural interior space applied by home network system, designers need to understand products of the home network system comprised by technical bases and classification of the system. This research is for introducing the information of the recent home network system, products and possible application of ubiquitous system for the future interior architectural space.

  • PDF

Projected Local Binary Pattern based Two-Wheelers Detection using Adaboost Algorithm

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.1 no.2
    • /
    • pp.119-126
    • /
    • 2014
  • We propose a bicycle detection system riding on people based on modified projected local binary pattern(PLBP) for vision based intelligent vehicles. Projection method has robustness for rotation invariant and reducing dimensionality for original image. The features of Local binary pattern(LBP) are fast to compute and simple to implement for object recognition and texture classification area. Moreover, We use uniform pattern to remove the noise. This paper suggests that modified LBP method and projection vector having different weighting values according to the local shape and area in the image. Also our system maintains the simplicity of evaluation of traditional formulation while being more discriminative. Our experimental results show that a bicycle and motorcycle riding on people detection system based on proposed PLBP features achieve higher detection accuracy rate than traditional features.

  • PDF

Implementation and Verification of Multi-level Convolutional Neural Network Algorithm for Identifying Unauthorized Image Files in the Military (국방분야 비인가 이미지 파일 탐지를 위한 다중 레벨 컨볼루션 신경망 알고리즘의 구현 및 검증)

  • Kim, Youngsoo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.858-863
    • /
    • 2018
  • In this paper, we propose and implement a multi-level convolutional neural network (CNN) algorithm to identify the sexually explicit and lewdness of various image files, and verify its effectiveness by using unauthorized image files generated in the actual military. The proposed algorithm increases the accuracy by applying the convolutional artificial neural network step by step to minimize classification error between similar categories. Experimental data have categorized 20,005 images in the real field into 6 authorization categories and 11 non-authorization categories. Experimental results show that the overall detection rate is 99.51% for the image files. In particular, the excellence of the proposed algorithm is verified through reducing the identification error rate between similar categories by 64.87% compared with the general CNN algorithm.

KOMPSAT - Urban Application Center

  • Kressler F.P.;Kim Y.S.;Steinnocher K.;Triebnig G.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.158-161
    • /
    • 2004
  • KOMPSAT-2, to be launched in 2005, will be a long awaited addition to the existing high-resolution satellite sensors. The use of download facilities in Europe will greatly increase its capacity without loosing any coverage over Korea. In this paper the concept for an Urban Application Center is presented. It is part of the proposed Regional Application Center which is dedicated to archiving and distributing KOMPSAT-2 images. The Urban Application Center will offer services derived from KOMPSAT-2. Its aim is to promote the use of KOMPSAT-2 data and increase the general awareness and acceptance of satellite data.

  • PDF

An intelligent system for semiconductor yield classification with soft computing techniques (소프트컴퓨팅 기법을 활용하는 지능적인 반도체 수율 분류 시스템)

  • Lee, Jang-Hee;Ha, Sung-Ho
    • The Journal of Information Systems
    • /
    • v.19 no.1
    • /
    • pp.19-33
    • /
    • 2010
  • 생산 수율은 비선형관계를 지닌 여러 요인들에 의해 영향을 받기 때문에 반도체 생산의 경우 예측이 어렵다. 본 논문에서 저자들은 사례기반추론과 자기조직화신경망 기반의 데이터마이닝 기법을 활용하여 수율의 높고 낮음을 밝히는 지능화된 수율예측시스템을 제시한다. 이 시스템은 자기조직회신경망을 사용하여 생산 로트의 공정파라미터 패턴을 파악하고 속성가중치 기반의 사례기반추론을 통해 신규 로트의 수율 수준을 예측한다. 이때 속성가중치는 역전파인공신경망을 통해 계산된다. 웹기반 시스템이 개발되고, 반도체 생산 기업의 실제 자료를 적용하여 본 시스템의 효율을 검증하고 평가한다.

Object Recognition Using the Edge Orientation Histogram and Improved Multi-Layer Neural Network

  • Kang, Myung-A
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.142-150
    • /
    • 2018
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.

Automatic Generation of RDF Metadata for Semantic Search in Semantic Web (시맨틱 웹에서 의미 검색을 위한 RDF 메타데이타 자동 생성)

  • 강상구;양재영;양승섭;최원종;최중민
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.311-320
    • /
    • 2002
  • 시맨틱 웹은 인간이 이해하는 것처럼 웹 문서의 의미를 컴퓨터가 처리할 수 있도록 하는데 있다. 그러나 인터넷 등 정보통신 기술의 발전으로 인해 정보량이 급증함으로써 이들 정보 자원을 효과적으로 검색하기에는 많은 어려움이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 주석 에디터를 사용하여 논문에 대한 RDF 메타데이타의 자동 생성 방법을 제안한다. 사용자가 논문을 주석 처리할 때, 문서에 대한 특징을 추출하고 온토로지 인터페이스를 사용하여 문서를 분류한다. 구현된 시스템을 통해 사용자는 추출된 메타데이타를 메타데이타 뷰를 통해 볼 수 있으며, HTML 뷰를 통해 메타데이타를 수동으로 수정이 가능하다. 이 메타데이타는 RDF Repository로 저장할 수 있으며, 주석 뷰를 통하여 RDF 메타데이타 생성을 확인할 수 있다. 이렇게 생성된 RDF 메타데이타는 웹 로봇이 내용의 의미 파악 및 카테고리 정보를 쉽게 알 수 있도록 해준다. 본 논문은 검색 엔진을 통하여 논문 검색시 전체 내용보다 RDF 메타데이타 정보만으로 효율적인 검색을 할 수 있는 방법에 초점을 둔다.

  • PDF

Intelligent Classification and Context Analysis System of Voice Data (음성 데이터의 지능적 분류 및 컨텍스트 분석 시스템 구현)

  • Choi, HyeonSeok;Joo, SungHwan;Kim, DaeCheon;Park, YeChan;Yeom, Sanggil;Choo, HyeonSeung
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.162-163
    • /
    • 2016
  • 사람은 의사소통을 위해 음성, 글자, 몸짓 등 다양한 매개체를 활용한다. 오늘날 스마트폰의 발달로 문자의 비중이 높아지고 있지만 음성 대화는 여전히 사람들 사이에서 가장 많이 사용되어지는 의사소통 수단이다. 음성 대화는 녹음해서 음성 데이터로 남길 수 있다. 음성을 녹음하는 과정은 간편하지만 녹음파일에서 원하는 데이터를 찾는 것은 많은 시간이 소모된다. 본 논문에서는 음성 데이터를 인식하여 텍스트화 시키고 문자화 된 데이터를 분석하여 사용자에게 효율적으로 분류하는 시스템을 제안한다. 이 시스템으로 사용자는 음성 데이터의 내용을 들어보지 않고 파악할 수 있으며 원하는 내용을 찾을 수도 있다.