We propose a detection algorithm based on tree-structured convolutional neural networks (TsCNNs) that finds pornography, propaganda, or other inappropriate content on a social media network. The algorithm sequentially applies the typical convolutional neural network (CNN) algorithm in a tree-like structure to minimize classification errors in similar classes, and thus improves accuracy. We implemented the detection system and conducted experiments on a data set comprised of 6 ordinary classes and 11 inappropriate classes collected from the Korean military social network. Each model of the proposed algorithm was trained, and the performance was then evaluated according to the images and videos identified. Experimental results with 20,005 new images showed that the overall accuracy in image identification achieved a high-performance level of 99.51%, and the effectiveness of the algorithm reduced identification errors by the typical CNN algorithm by 64.87 %. By reducing false alarms in video identification from the domain, the TsCNNs achieved optimal performance of 98.11% when using 10 minutes frame-sampling intervals. This indicates that classification through proper sampling contributes to the reduction of computational burden and false alarms.
The Journal of the Convergence on Culture Technology
/
v.10
no.4
/
pp.575-580
/
2024
Detecting the status of websites, normal or phishing, is necessary to defend against intelligent phishing attacks. We propose a machine learning-based classification to predict the status of websites. First, we collect information about 'URL', convert it into numerical data, and remove outliers. Second, we apply VIF(Variance Inflation Factors) to understand the correlation and independence between variables. Finally, we develop a phishing website detection model with machine learning-based classifications, which predicts website status. In the test datasets, Random Forest showed the best performance, with precision of 93.74%, recall of 92.26%, and accuracy of 93.14%. In the future, we expect to apply our model to detect various phishing crimes.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.15
no.1
/
pp.1-15
/
2016
This study aims to develop a model by which city bus drivers who are likely to cause an accident can be figured out based on the information about their actual driving records. For this purpose, from the information about the actual driving records of the drivers who have caused an accident and those who have not caused any, significance variables related to traffic accidents are drawn, and the accuracy between models is compared for the classification models developed, applying a discriminant analysis and logistic regression analysis. In addition, the developed models are applied to the data on other drivers' driving records to verify the accuracy of the models. As a result of developing a model for the classification of drivers who are likely to cause an accident, when deceleration ($X_{deceleration}$) and acceleration to the right ($Y_{right}$) are simultaneously in action, this variable was drawn as the optimal factor variable of the classification of drivers who had caused an accident, and the prediction model by discriminant analysis classified drivers who had caused an accident at a rate up to 62.8%, and the prediction model by logistic regression analysis could classify those who had caused an accident at a rate up to 76.7%. In addition, as a result of the verification of model predictive power of the models showed an accuracy rate of 84.1%.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.3
s.309
/
pp.76-83
/
2006
A main objective of audio equalizer is for user to tailor acoustic frequency response to increase sound comfort and example applications of audio equalizer includes large-scale audio system to portable audio such as mobile MP3 player. Up to now, all the audio equalizer requires manual setting to equalize frequency bands to create suitable sound quality for each genre of music. In this paper, we propose an intelligent audio graphic equalizer system that automatically classifies the music genre using music content analysis and then the music sound is boosted with the given frequency gains according to the classified musical genre when playback. In order to reproduce comfort sound, the musical genre is determined based on two-step hierarchical algorithm - coarse-level and fine-level classification. It can prevent annoying sound reproduction due to the sudden change of the equalizer gains at the beginning of the music playback. Each stage of the music classification experiments shows at least 80% of success with complete genre classification and equalizer operation within 2 sec. Simple S/W graphical user interface of 3-band automatic equalizer is implemented using visual C on personal computer.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.2
/
pp.189-194
/
2010
In the recommendation system that recommends services to a specific user by using the estimation value of other users for users' recommendation service, collaborative filtering methods are widely used. But such recommendation systems have problems that exact classification is not possible because a specific user is classified to already classified group in the course of clustering and inexact result can be recommended in case of big errors in users' estimation values. In this paper, in order to increase estimation accuracy, the researchers suggest a recommendation system that applies collaborative filtering after reclassifying on the basis of a specific user's classification items and then finding and correcting the estimation values of the users beyond the critical value of time. This system uses a method where a specific user is not classified to already classified group in the course of clustering but a group is reorganized on the basis of the specific user. In addition, the researchers correct estimation information by cutting off the subordinate 10% from the trimmed mean of samples and then applies weight over time to the remaining data. As the result of an experiment, the suggested method demonstrated about 14.9%'s more accurate estimation result in case of using MAE than general collaborative filtering method.
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.4
/
pp.563-568
/
2007
This paper presents a methodology for predicting nonlinear time series based on the neural network with weighted fuzzy membership functions (NEWFM). The degree of classification intensity is obtained by bounded sum of weighted fuzzy membership functions extracted by NEWFM, then weighted average defuzzification is used for predicting nonlinear time series. The experimental results demonstrate that NEWFM has the classification capability of 92.22% against the target class of GDP. The time series created by NEWFM model has a relatively close approximation to the GDP which is a typical business cycle indicator, and has been proved to be a useful indicator which has the turning point forecasting capability of average 12 months in the peak point and average 6 months in the trough point during 5th to 8th cyclical period. In addition, NEWFM measures the efficiency of the economic indexes by the feature selection and enables the users to forecast with reduced numbers of 7 among 10 leading indexes while improving the classification rate from 90% to 92.22%.
This paper proposes an intelligent surveillance system to recognize suspicious patterns of the human behavior by using the Hidden Markov Model. First, the method finds foot area of the human by motion detection algorithm from image sequence of the surveillance camera. Then, these foot locus form observation series of features to learn the HMM. The feature that is position of the human foot is changed to each code that corresponds to a specific label among 16 local partitions of image region. Therefore, specific moving patterns formed by the foot locus are the series of the label numbers. The Baum-Welch algorithm of the HMM learns each suspicious and specific pattern to classify the human behaviors. To recognize the inputted human behavior pattern in a test image, the probabilistic comparison between the learned pattern of the HMM and foot series to be tested decides the categorization of the test pattern. The experimental results show that the method can be applied to detect a suspicious person prowling in corridor.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.2
/
pp.435-442
/
2015
In this paper, we propose a tracking and recognition of pedestrian/vehicle for intelligent multi-visual surveillance system. The intelligent multi-visual surveillance system consists of several fixed cameras and one calibrated PTZ camera, which automatically tracks and recognizes the detected moving objects. The fixed wide-angle cameras are used to monitor large open areas, but the moving objects on the images are too small to view in detail. But, the PTZ camera is capable of increasing the monitoring area and enhancing the image quality by tracking and zooming in on a target. The proposed system is able to determine whether the detected moving objects are pedestrian/vehicle or not using the SVM. In order to reduce the tracking error, an improved camera calibration algorithm between the fixed cameras and the PTZ camera is proposed. Various experimental results show the effectiveness of the proposed system.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.10
/
pp.2180-2188
/
2009
This paper is study on real-time hand gesture recognition system based on vision for intelligent robot control. We are proposed a recognition system using PCA and BP algorithm. Recognition of hand gestures consists of two steps which are preprocessing step using PCA algorithm and classification step using BP algorithm. The PCA algorithm is a technique used to reduce multidimensional data sets to lower dimensions for effective analysis. In our simulation, the PCA is applied to calculate feature projection vectors for the image of a given hand. The BP algorithm is capable of doing parallel distributed processing and expedite processing since it take parallel structure. The BP algorithm recognized in real time hand gestures by self learning of trained eigen hand gesture. The proposed PCA and BP algorithm show improvement on the recognition compared to PCA algorithm.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.3
/
pp.337-342
/
2010
The rise of music resources has led to a parallel rise in the need to manage thousands of songs on user devices. So users are tend to build play-list for manage songs. However the manual selection of songs for creating play-list is bothersome task. This paper proposes an auto play-list recommendation system considering user's context of use and preference. This system has two separate systems: mood and emotion classification system and music recommendation system. Users need to choose just one seed song for reflection their context of use and preference. The system recommends songs before the current song ends in order to fill up user play-list. User also can remove unsatisfied songs from recommended song list to adapt user preferences of the system for the next recommendation precess. The generated play-lists show well defined mood and emotion of music and provide songs that user preferences are reflected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.