Lazy loaming methods including CBR have relative advantages in comparison with eager loaming methods such as artificial neural networks and decision trees. However, they are very sensitive to irrelevant features. In other words, when there are irrelevant features, larry learning methods have difficulty in comparing cases. Therefore, their performance can be degraded significantly. To overcome this disadvantage, feature weighting methods for lazy loaming methods have been studied. Most of the existing researches, however, were focused on global feature weighting. In this research, we propose a new local feature weighting method, which we shall call CBDFW. CBDFW stores classification performance of randomly generated feature weight vectors. Then, given a new query case, CBDFW retrieves the successful feature weight vectors and designs a feature weight vector fur the query case. In the test on credit evaluation domain, CBDFW showed better classification accuracy when compared to the results of previous researches.
Prediction of corporate failure using past financial data is well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks (NNs) can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. Although numerous theoretical and experimental studies reported the usefulness or neural networks in classification studies, there exists a major drawback in building and using the model. That is, the user can not readily comprehend the final rules that the neural network models acquire. We propose a genetic algorithms (GAs) approach in this study and illustrate how GAs can be applied to corporate failure prediction modeling. An advantage of GAs approach offers is that it is capable of extracting rules that are easy to understand for users like expert systems. The preliminary results show that rule extraction approach using GAs for bankruptcy prediction modeling is promising.
This study aims to suggest a new algorithm for detecting two-wheelers on road that have various shapes according to the viewing angle for vision based intelligent vehicles. This article describes a new approach to two-wheelers detection algorithm riding on people based on modified Histogram of Oriented Gradients (HOG) using correlation coefficient (CC). The CC between two local area variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using HOG which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the CC between the area of each cell and one of two-wheelers, can be extracted as the weighting factor in process for normalizing the modified HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. In this experiment, we can get the result that the detection rate of the proposed method is higher than that of the traditional method.
Journal of the Korean Society of Industry Convergence
/
v.7
no.2
/
pp.199-205
/
2004
This paper describes the fault diagnosis method to order to construct CIM in complex system with hierarchical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement a special neural network. Fault diagnosis system can forecast faults in a system and decide from the signal information of current machine state. Comparing with other diagnosis system for a single fault, the developed system deals with multiple fault diagnosis, comprising hierarchical neural network (HNN). HNN consists of four level neural network, i.e. first is fault symptom classification and second fault diagnosis for item, third is symptom classification and forth fault diagnosis for component. UNIX IPC is used for implementing HNN with multitasking and message transfer between processes in SUN workstation with X-Windows (Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural network represents a separate process in UNIX operating system, information exchanging and cooperating between each neural network was done by message queue.
With the innovation of information technology, non-face-to-face robo advisor with high accessibility and convenience is spreading. The current robot advisor recommends appropriate investment products after understanding the investment propensity based on the structured data entered directly or indirectly by individuals. However, it is an inconvenient and obtrusive way for financial consumers to inquire or input their own subjective propensity to invest. Hence, this study proposes a way to deduce the propensity to invest in unstructured data that customers voluntarily exposed during consultation or online. Since prediction performance based on unstructured document differs according to the characteristics of text, in this study, classification algorithm optimized for the characteristic of text left by financial consumers is selected by performing prediction performance evaluation of various learning discrimination algorithms and proposed an intelligent method that automatically recommends investment products. User tests were given to MBA students. After showing the recommended investment and list of investment products, satisfaction was asked. Financial consumers' satisfaction was measured by dividing them into investment propensity and recommendation goods. The results suggest that the users high satisfaction with investment products recommended by the method proposed in this paper. The results showed that it can be applies to non-face-to-face robo advisor.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.11a
/
pp.509-515
/
2005
Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved it more powerful than traditional artificial neural networks (ANNs)(Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al, 2005; Kim, 2003). The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is cost-sensitive. Therefore, it is necessary to convert the output of the classifier into well-calibrated posterior probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create probabilities (Platt, 1999; Drish, 2001). This study applies a method to estimate the probability of outputs of SVM to bankruptcy prediction and then suggests credit scoring methods using the estimated probability for bank's loan decision making.
Electroencephalogram (EEG) recording provides a new way to support human-machine communication. It gives us an opportunity to analyze the neuro-dynamics of human cognition. Machine learning is a powerful for the EEG classification. In addition, machine learning can compensate for high variability of EEG when analyzing data in real time. However, the optimal EEG electrode location must be prioritized in order to extract the most relevant features from brain wave data. In this paper, we propose an intelligent system model for the extraction of EEG data by training the optimal electrode location of EEG in a specific problem. The proposed system is basically a fuzzy system and uses a neural network structurally. The fuzzy clustering method is used to determine the optimal number of fuzzy rules using the features extracted from the EEG data. The parameters and weight values found in the process of determining the number of rules determined here must be tuned for optimization in the learning process. Genetic algorithms are used to obtain optimized parameters. We present useful results by using optimal rule numbers and non - symmetric membership function using EEG data for four movements with the right arm through various experiments.
When a prescription change occurs in the hospital depending on a patient's improvement status, pharmacists directly classify manually returned pills which are not taken by a patient. There are hundreds of kinds of pills to classify. Because it is manual, mistakes can occur and which can lead to medical accidents. In this study, we have compared YOLO, Faster R-CNN and RetinaNet to classify and detect pills. The data consisted of 10 classes and used 100 images per class. To evaluate the performance of each model, we used cross-validation. As a result, the YOLO Model had sensitivity of 91.05%, FPs/image of 0.0507. The Faster R-CNN's sensitivity was 99.6% and FPs/image was 0.0089. The RetinaNet showed sensitivity of 98.31% and FPs/image of 0.0119. Faster RCNN showed the best performance among these three models tested. Thus, the most appropriate model for classifying pills among the three models is the Faster R-CNN with the most accurate detection and classification results and a low FP/image.
In these days, the rapid development in prediction technology using artificial intelligent is being applied in a variety of engineering fields. Especially, dimensionality reduction technologies such as autoencoder and convolutional neural network have enabled the classification and regression of high-dimensional data. In particular, pixel level prediction technology enables semantic segmentation (fine-grained classification), or physical value prediction for each pixel such as depth or surface normal estimation. In this study, the pressure distribution of the ship's surface was estimated at the pixel level based on the artificial neural network. First, a potential flow analysis was performed on the hull form data generated by transforming the baseline hull form data to construct 429 datasets for learning. Thereafter, a neural network with a U-shape structure was configured to learn the pressure value at the node position of the pretreated hull form. As a result, for the hull form included in training set, it was confirmed that the neural network can make a good prediction for pressure distribution. But in case of container ship, which is not included and have different characteristics, the network couldn't give a reasonable result.
Due to COVID-19, Correct method of wearing mask is important to prevent COVID-19 and the other respiratory tract infections. And the deep learning technology in the image processing has been developed. The purpose of this study is to create the type of mask wearing dataset for deep learning models and select the deep learning model to detect the wearing mask correctly. The Image dataset is the 2,296 images acquired using a web crawler. Deep learning classification models provided by tensorflow are used to validate the dataset. And Object detection deep learning model YOLOs are used to select the detection deep learning model to detect the wearing mask correctly. In this process, this paper proposes to validate the type of mask wearing datasets and YOLOv5 is the effective model to detect the type of mask wearing. The experimental results show that reliable dataset is acquired and the YOLOv5 model effectively recognize type of mask wearing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.