• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.026 seconds

Electromyogram Pattern Recognition by Hierarchical Temporal Memory Learning Algorithm (시공간적 계층 메모리 학습 알고리즘을 이용한 근전도 패턴인식)

  • Sung, Moo-Joung;Chu, Jun-Uk;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper presents a new electromyogram (EMG) pattern recognition method based on the Hierarchical Temporal Memory (HTM) algorithm which is originally devised for image pattern recognition. In the modified HTM algorithm, a simplified two-level structure with spatial pooler, temporal pooler, and supervised mapper is proposed for efficient learning and classification of the EMG signals. To enhance the recognition performance, the category information is utilized not only in the supervised mapper but also in the temporal pooler. The experimental results show that the ten kinds of hand motion are successfully recognized.

Nu-SVR Learning with Predetermined Basis Functions Included (정해진 기저함수가 포함되는 Nu-SVR 학습방법)

  • Kim, Young-Il;Cho, Won-Hee;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.316-321
    • /
    • 2003
  • Recently, support vector learning attracts great interests in the areas of pattern classification, function approximation, and abnormality detection. It is well-known that among the various support vector learning methods, the so-called no-versions are particularly useful in cases that we need to control the total number of support vectors. In this paper, we consider the problem of function approximation utilizing both predetermined basis functions and a no-version support vector learning called $\nu-SVR$. After reviewing $\varepsilon-SVR$, $\nu-SVR$, and a semi-parametric approach, this paper presents an extension of the conventional $\nu-SVR$ method toward the direction that can utilize Predetermined basis functions. Moreover, the applicability of the presented method is illustrated via an example.

Iris Recognition Based on a Shift-Invariant Wavelet Transform

  • Cho, Seongwon;Kim, Jaemin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.322-326
    • /
    • 2004
  • This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.

Gradation Image Processing for Text Recognition in Road Signs Using Image Division and Merging

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.27-33
    • /
    • 2014
  • This paper proposes a gradation image processing method for the development of a Road Sign Recognition Platform (RReP), which aims to facilitate the rapid and accurate management and surveying of approximately 160,000 road signs installed along the highways, national roadways, and local roads in the cities, districts (gun), and provinces (do) of Korea. RReP is based on GPS(Global Positioning System), IMU(Inertial Measurement Unit), INS(Inertial Navigation System), DMI(Distance Measurement Instrument), and lasers, and uses an imagery information collection/classification module to allow the automatic recognition of signs, the collection of shapes, pole locations, and sign-type data, and the creation of road sign registers, by extracting basic data related to the shape and sign content, and automated database design. Image division and merging, which were applied in this study, produce superior results compared with local binarization method in terms of speed. At the results, larger texts area were found in images, the accuracy of text recognition was improved when images had been gradated. Multi-threshold values of natural scene images are used to improve the extraction rate of texts and figures based on pattern recognition.

Cost-sensitive Learning for Credit Card Fraud Detection (신용카드 사기 검출을 위한 비용 기반 학습에 관한 연구)

  • Park Lae-Jeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.545-551
    • /
    • 2005
  • The main objective of fraud detection is to minimize costs or losses that are incurred due to fraudulent transactions. Because of the problem's nature such as highly skewed, overlapping class distribution and non-uniform misclassification costs, it is, however, practically difficult to generate a classifier that is near-optimal in terms of classification costs at a desired operating range of rejection rates. This paper defines a performance measure that reflects classifier's costs at a specific operating range and offers a cost-sensitive learning approach that enables us to train classifiers suitable for real-world credit card fraud detection by directly optimizing the performance measure with evolutionary programming. The experimental results demonstrate that the proposed approach provides an effective way of training cost-sensitive classifiers for successful fraud detection, compared to other training methods.

Hand Gesture Recognition Using an Infrared Proximity Sensor Array

  • Batchuluun, Ganbayar;Odgerel, Bayanmunkh;Lee, Chang Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.186-191
    • /
    • 2015
  • Hand gesture is the most common tool used to interact with and control various electronic devices. In this paper, we propose a novel hand gesture recognition method using fuzzy logic based classification with a new type of sensor array. In some cases, feature patterns of hand gesture signals cannot be uniquely distinguished and recognized when people perform the same gesture in different ways. Moreover, differences in the hand shape and skeletal articulation of the arm influence to the process. Manifold features were extracted, and efficient features, which make gestures distinguishable, were selected. However, there exist similar feature patterns across different hand gestures, and fuzzy logic is applied to classify them. Fuzzy rules are defined based on the many feature patterns of the input signal. An adaptive neural fuzzy inference system was used to generate fuzzy rules automatically for classifying hand gestures using low number of feature patterns as input. In addition, emotion expression was conducted after the hand gesture recognition for resultant human-robot interaction. Our proposed method was tested with many hand gesture datasets and validated with different evaluation metrics. Experimental results show that our method detects more hand gestures as compared to the other existing methods with robust hand gesture recognition and corresponding emotion expressions, in real time.

A Differential Evolution based Support Vector Clustering (차분진화 기반의 Support Vector Clustering)

  • Jun, Sung-Hae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.679-683
    • /
    • 2007
  • Statistical learning theory by Vapnik consists of support vector machine(SVM), support vector regression(SVR), and support vector clustering(SVC) for classification, regression, and clustering respectively. In this algorithms, SVC is good clustering algorithm using support vectors based on Gaussian kernel function. But, similar to SVM and SVR, SVC needs to determine kernel parameters and regularization constant optimally. In general, the parameters have been determined by the arts of researchers and grid search which is demanded computing time heavily. In this paper, we propose a differential evolution based SVC(DESVC) which combines differential evolution into SVC for efficient selection of kernel parameters and regularization constant. To verify improved performance of our DESVC, we make experiments using the data sets from UCI machine learning repository and simulation.

Interacting Multiple Model Vehicle-Tracking System Based on Neural Network (신경회로망을 이용한 다중모델 차량추적 시스템)

  • Hwang, Jae-Pil;Park, Seong-Keun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.641-647
    • /
    • 2009
  • In this paper, a new filtering scheme for adaptive cruise control (ACC) system is presented. In the proposed scheme, the identification of the mode of the preceding vehicle is considered as a classification problem and it is done by a neural network classifier. The neural network classifier outputs a posterior probability of the mode of the preceding vehicle and the probability is directly used in the IMM framework. Finally, ten scenarios are made and the proposed NIMM is tested on them to show its validity.

Nucleus Segmentation and Recognition of Uterine Cervical Pap-Smears using Enhanced Fuzzy ART Algorithm (개선된 퍼지 ART 알고리즘을 이용한 자궁 경부 세포진 핵 분할 및 인식)

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.519-524
    • /
    • 2006
  • Segmentation for the region of nucleus in the image of uterine cervical cytodiagnosis is known as the most difficult and important part in the automatic cervical cancer recognition system. In this paper, the region of nucleus is extracted from an image of uterine cervical cytodiagnosis using the fuzzy grey morphology operation. The characteristics of the nucleus are extracted from the analysis of morphemetric features, densitometric features, colormetric features, and textural features based on the detected region of nucleus area. The classification criterion of a nucleus is defined according to the standard categories of the Bethesda system. The enhanced fuzzy ART algorithm is used to the extracted nucleus and the results show that the proposed method is efficient in nucleus recognition and uterine cervical Pap-Smears extraction.

An Intelligent MAC Protocol Selection Method based on Machine Learning in Wireless Sensor Networks

  • Qiao, Mu;Zhao, Haitao;Huang, Shengchun;Zhou, Li;Wang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5425-5448
    • /
    • 2018
  • Wireless sensor network has been widely used in Internet of Things (IoT) applications to support large and dense networks. As sensor nodes are usually tiny and provided with limited hardware resources, the existing multiple access methods, which involve high computational complexity to preserve the protocol performance, is not available under such a scenario. In this paper, we propose an intelligent Medium Access Control (MAC) protocol selection scheme based on machine learning in wireless sensor networks. We jointly consider the impact of inherent behavior and external environments to deal with the application limitation problem of the single type MAC protocol. This scheme can benefit from the combination of the competitive protocols and non-competitive protocols, and help the network nodes to select the MAC protocol that best suits the current network condition. Extensive simulation results validate our work, and it also proven that the accuracy of the proposed MAC protocol selection strategy is higher than the existing work.