• Title/Summary/Keyword: intelligent classification

Search Result 919, Processing Time 0.027 seconds

Evolutionary PSR Estimation Algorithm for Feature Extraction of Sonar Target (소나 표적의 특징정보추출을 위한 진화적 PSR 추정 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.632-637
    • /
    • 2008
  • In real system application, the propeller shaft rate (PSR) estimation algorithm for the feature extraction of the sonar target operates with the following problems: it requires both accurate and efficient the fundamental finding method because it is essential and difficult to distinguish harmonic family composed of the fundamental and its harmonics from the multiple spectral lines in the frequency spectrum-based sonar target classification, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an evolutionary PSR estimation algorithm using an expert knowledge and the evolution strategy, is proposed. To verify the performance of the proposed algorithm, a sonar target PSR estimation is performed. Simulation results show that the proposed algorithm effectively solves the problems in the realtime system application.

Integrated Corporate Bankruptcy Prediction Model Using Genetic Algorithms (유전자 알고리즘 기반의 기업부실예측 통합모형)

  • Ok, Joong-Kyung;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.99-121
    • /
    • 2009
  • Recently, there have been many studies that predict corporate bankruptcy using data mining techniques. Although various data mining techniques have been investigated, some researchers have tried to combine the results of each data mining technique in order to improve classification performance. In this study, we classify 4 types of data mining techniques via their characteristics and select representative techniques of each type then combine them using a genetic algorithm. The genetic algorithm may find optimal or near-optimal solution because it is a global optimization technique. This study compares the results of single models, typical combination models, and the proposed integration model using the genetic algorithm.

  • PDF

Classification and Recognition of Movement Behavior of Animal based on Decision Tree (의사결정나무를 이용한 생물의 행동 패턴 구분과 인식)

  • Lee, Seng-Tai;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.682-687
    • /
    • 2005
  • Behavioral sequences of the medaka(Oryzias latipes) were investigated through an image system in response to medaka treated with the insecticide and medaka not treated with the insecticide, diazinon(0.1 mg/1). After much observation, behavioral patterns could be divided into 4 patterns: active smooth, active shaking, inactive smooth, and inactive shaking. These patterns were analyzed by 5 features: speed ratio, x and y axes projection, FFT to angle transition, fractal dimension, and center of mass. Each pattern was classified using decision tree. It provide a natural way to incorporate prior knowledge from human experts in fish behavior, The main focus of this study was to determine whether the decision tree could be useful in interpreting and classifying behavior patterns of the animal.

Detection and Diagnosis of Induction Motor Using Conditional FCM and Radial Basis Function Network (조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출)

  • Kim, Sung-Suk;Lee, Dae-Jeong;Park, Jang-Hwan;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.878-882
    • /
    • 2004
  • In this paper, we propose a hierarchical hybrid neural network for detecting faults of induction motor. Implementing the classifier based on the input and output data, we apply appropriate transform and classification method at each step. In the proposed method, after obtaining the current of state of motor for each period, we transform it by Principle Component Analysis(PCA) to reduce its dimension. Before the training process, we use the conditional Fuzzy C-means(FCM) for obtaining the initial parameters of neural network for more effective learning procedure. From the various simulations, we find that the proposed method shows better performance to detect and diagnosis of induction motor and compare than other methods.

Fault Diagnosis of Induction Motor based on PCA and Nonlinear Classifier (PCA와 비선형분류기에 기반을 둔 유도전동기의 고장진단)

  • Park, Sung-Moo;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.119-123
    • /
    • 2006
  • In this paper, we propose fault diagnosis of induction motor based on PCA and MLP. To resolve the main drawback of MLP, we calculate the reduced features by PCA in advance. Finally, we develop the diagnosis system based on nonlinear classifier by MLP rather than linear classifier by conventional k-NN. By various experiments, we obtained better classification performance in comparison to the results produced by linear classifier by k-NN.

Qualitative Evaluation by using Intelligent Fuzzy Logical Inference for the Public Education (지능형 퍼지 추론 기법을 적용한 공교육의 정성 평가방법)

  • Kim, Youngtaek
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.1
    • /
    • pp.97-105
    • /
    • 2014
  • To enhance the practical usage of solely quantitative evaluation method for each students on the current public education fields which might cause some social problems, an intelligent and adaptive fuzzy logical inference methodology for the additional qualitative evaluation technique is proposed to utilize each students personal characteristic properties to be evaluated. Proposed method uses some verbal descriptions for the linguistic qualifier in addition to the grade points. An imaginary virtual experimentation only has been implemented due to some difficulties with the critical national educational policy problems in the case of some possibly real and practical experimental environments to be utilized for the simulation.

  • PDF

The Method for Recommend of Contact Area According to the User's SLA(S-RCA) based on a Moving Path Prediction Service (이용자의 과거 위치 정보와 이용자별 SLA(Sevice Level Agreement)를 지원하는 동적 예측서비스 기반의 접촉 지역 추천(S-RCA) 기법)

  • Cho, Kyeong Rae;Lee, Jee Hyong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.41-54
    • /
    • 2013
  • In this paper, We collected location based services of the user's past moving paths through the GPS. Using the collected by location-based services through the analysis of the similarity between the user's of service level agreement recommended of mobile contact area(SLA) proposed that can be. S-RCA method based on Service Level Agreement of the users in order to provide the service user's path distance, time, and to predict the direction of the movement paths and collect. The data collected by the interests and requirements of users through classification with the same interests and the needs of users to move between the analysis of the similarity between the path is used to analyze the results of analysis of the path-specific tolerance range (distance, time, and space) is determined according to the difference in the contact area. From a small area of the error range for users first to recommended and through their smartphones recommended contact area (S-RCA) to meet with the other party to make a choice of recommended methods. We verify through experiments that proposed method(S-RCA) a valid and reliable mobile contact area were recommended.

Development of Fuzzy Support Vector Machine and Evaluation of Performance Using Ionosphere Radar Data (Fuzzy Twin Support Vector Machine 개발 및 전리층 레이더 데이터를 통한 성능 평가)

  • Cheon, Min-Kyu;Yoon, Chang-Yong;Kim, Eun-Tai;Park, Mig-Non
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.549-554
    • /
    • 2008
  • Support Vector machine is the classifier which is based on the statistical training theory. Twin Support Vector Machine(TWSVM) is a kind of binary classifier that determines two nonparallel planes by solving two related SVM-type problems. The training time of TWSVM is shorter than that of SVM, but TWSVM doesn't shows worse performance than that of SVM. This paper proposes the TWSVM which is applied fuzzy membership, and compares the performance of this classifier with the other classifiers using Ionosphere radar data set.

TOLERANT FUZZY PATTERN MATCHING : AN INTRODUCTION

  • DUBOIS, DIDIER;PRADE, HENRI
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.3-17
    • /
    • 1993
  • The fuzzy pattern matching technique has been developed in the framework of fuzzy set and possibility theory in order to take into account the imprecision and the uncertainty pervading values which have to be compared to requirements (which may be fuzzy) in a pattern matching process. This paper restates the basic principles and extends them to situations where (sub)patterns are only required to be satisfied up to a given tolerance (which may be fuzzy), or where the different subparts of a compound pattern may have various levels of importance. Both cases correspond to a weakening of elementary patterns. which can be expressed by a fuzzy relations modelling an approximate equality or an uncertain strict equality respectively. We also study the more sophisticated case where some elementary patterns have not to be satisfied with the highest priority provided that weaker requirements remain satisfied. The fuzzy pattern matching technique applies in a variety of problems including the evaluation of soft queries with respect to a fuzzy database, the evaluation of the fuzzy condition parts of rules in approximate reasoning, or the evaluation of the belonging of an ill-known object to a flexible class in classification problems.

  • PDF

A Muti-Resolution Approach to Restaurant Named Entity Recognition in Korean Web

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.277-284
    • /
    • 2012
  • Named entity recognition (NER) technique can play a crucial role in extracting information from the web. While NER systems with relatively high performances have been developed based on careful manipulation of terms with a statistical model, term mismatches often degrade the performance of such systems because the strings of all the candidate entities are not known a priori. Despite the importance of lexical-level term mismatches for NER systems, however, most NER approaches developed to date utilize only the term string itself and simple term-level features, and do not exploit the semantic features of terms which can handle the variations of terms effectively. As a solution to this problem, here we propose to match the semantic concepts of term units in restaurant named entities (NEs), where these units are automatically generated from multiple resolutions of a semantic tree. As a test experiment, we applied our restaurant NER scheme to 49,153 nouns in Korean restaurant web pages. Our scheme achieved an average accuracy of 87.89% when applied to test data, which was considerably better than the 78.70% accuracy obtained using the baseline system.