• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.027 seconds

Stability evaluation model for loess deposits based on PCA-PNN

  • Li, Guangkun;Su, Maoxin;Xue, Yiguo;Song, Qian;Qiu, Daohong;Fu, Kang;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.551-560
    • /
    • 2021
  • Due to the low strength and high compressibility characteristics, the loess deposits tunnels are prone to large deformations and collapse. An accurate stability evaluation for loess deposits is of considerable significance in deformation control and safety work during tunnel construction. 37 groups of representative data based on real loess deposits cases were adopted to establish the stability evaluation model for the tunnel project in Yan'an, China. Physical and mechanical indices, including water content, cohesion, internal friction angle, elastic modulus, and poisson ratio are selected as index system on the stability level of loess. The data set is randomly divided into 80% as the training set and 20% as the test set. Firstly, principal component analysis (PCA) is used to convert the five index system to three linearly independent principal components X1, X2 and X3. Then, the principal components were used as input vectors for probabilistic neural network (PNN) to map the nonlinear relationship between the index system and stability level of loess. Furthermore, Leave-One-Out cross validation was applied for the training set to find the suitable smoothing factor. At last, the established model with the target smoothing factor 0.04 was applied for the test set, and a 100% prediction accuracy rate was obtained. This intelligent classification method for loess deposits can be easily conducted, which has wide potential applications in evaluating loess deposits.

Elevator Fault Classification Using Deep Learning Model (딥러닝 모델을 활용한 승강기 결함 분류)

  • Young-Jin, Jung;Chan-Young, Jang;Sung-Woo, Kang
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • Elevators are the main means of transport in buildings. A malfunction of an elevator in operation may cause in convenience to users. Furthermore, fatal accidents, such as injuries and death, may occur to the passengers also. Therefore, it is important to prevent failure before accidents happen. In related studies, preventive measures are proposed through analyzing failures, and the lifespan of elevator components. However, these methods are limited to existing an elevator model and its surroundings, including operating conditions and installed environments. Vibration occurs when the elevator is operated. Experts have classified types of faults, which are symptoms for malfunctions (failures), via analyzing vibration. This study proposes an artificial intelligent model for classifying faults automatically with deep learning algorithms through elevator vibration data, hereby preventing failures before they occur. In this study, the vibration data of six elevators are collected. The proposed methodology in this paper removes "the measurement error data" with incorrect measurements and extracts operating sections from the input datasets for proceeding deep learning models. As a result of comparing the performance of training five deep learning models, the maximum performance indicates Accuracy 97% and F1 Score 97%, respectively. This paper presents an artificial intelligent model for detecting elevator fault automatically. The users' safety and convenience may increase by detecting fault prior to the fatal malfunctions. In addition, it is possible to reduce manpower and time by assisting experts who have previously classified faults.

Highly Flexible Piezoelectric Tactile Sensor based on PZT/Epoxy Nanocomposite for Texture Recognition (텍스처 인지를 위한 PZT/Epoxy 나노 복합소재 기반 유연 압전 촉각센서)

  • Yulim Min;Yunjeong Kim;Jeongnam Kim;Saerom Seo;Hye Jin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • Recently, piezoelectric tactile sensors have garnered considerable attention in the field of texture recognition owing to their high sensitivity and high-frequency detection capability. Despite their remarkable potential, improving their mechanical flexibility to attach to complex surfaces remains challenging. In this study, we present a flexible piezoelectric sensor that can be bent to an extremely small radius of up to 2.5 mm and still maintain good electrical performance. The proposed sensor was fabricated by controlling the thickness that induces internal stress under external deformation. The fabricated piezoelectric sensor exhibited a high sensitivity of 9.3 nA/kPa ranging from 0 to 10 kPa and a wide frequency range of up to 1 kHz. To demonstrate real-time texture recognition by rubbing the surface of an object with our sensor, nine sets of fabric plates were prepared to reflect their material properties and surface roughness. To extract features of the objects from the detected sensing data, we converted the analog dataset to short-term Fourier transform images. Subsequently, texture recognition was performed using a convolutional neural network with a classification accuracy of 97%.

A Study of Classification Analysis about Traffic Conditions Using Factor Analysis and Cluster Analysis (요인분석 및 군집분석을 활용한 교통상황 유형 분류분석)

  • Su-hwan Jeong;Kyeung-hee Han;Jaehyun (Jason) So;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • In this study, a classification analysis was performed based on the type of traffic situation. The purpose was to derive the major variable factors that could represent the traffic situation. The TTI(Travel Time Index) was used as a criterion for determining traffic conditions, and analysis was performed using data generally detected by the Vehicle Detecting System(VDS). First, the major factors influencing the traffic situation were selected through factor analysis, and traffic conditions were clustered through a cluster analysis of the major factors. After that, variance analysis for each cluster was performed based on the TTI, and similar clusters were merged to categorize the type of traffic situation. The analysis derived, the maximum queue length and occupancy as major factors that could represent the traffic situation. Through this study, it is expected that efficient management of traffic congestion would be possible by just concentrating on the main variable factors that affect the traffic situation.

Development of sound location visualization intelligent control system for using PM hearing impaired users (청각 장애인 PM 이용자를 위한 소리 위치 시각화 지능형 제어 시스템 개발)

  • Yong-Hyeon Jo;Jin Young Choi
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.105-114
    • /
    • 2022
  • This paper is presents an intelligent control system that visualizes the direction of arrival for hearing impaired using personal mobility, and aims to recognize and prevent dangerous situations caused by sound such as alarm sounds and crack sounds on roads. The position estimation method of sound source uses a machine learning classification model characterized by generalized correlated phase transformation based on time difference of arrival. In the experimental environment reproducing the road situations, four classification models learned after extracting learning data according to wind speeds 0km/h, 5.8km/h, 14.2km/h, and 26.4km/h were compared with grid search cross validation, and the Muti-Layer Perceptron(MLP) model with the best performance was applied as the optimal algorithm. When wind occurred, the proposed algorithm showed an average performance improvement of 7.6-11.5% compared to the previous studies.

A Regional Trip Modes Classification Methodology Using Mobile Phone Data (모바일 데이터를 활용한 지역간 수단통행 분류 방법론 개발)

  • Kyuhyuk Kim;Hyorim Han;Dongho Kim;Tai jin Song
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.77-93
    • /
    • 2024
  • The recent development of data collection technology, which conveys various travel data in real-world such as mobile data and probe vehicle data, facilitates transportation planners identifying specified spatio-temporal travel patterns. In this study, an easily implementable travel mode classification methodology was proposed to classify inter-regional trip-modes without modeling by superimposing trajectories generated from mobile phone signaling and transportation infrastructure points into a polygon scale of a shapefile in a GIS system. Each regional mode trip was classified according to the rules such as the presence of transportation infrastructure in the trip trajectory, travel time, and the presence of access trips. An accuracy test generates Type I and Type II error results table to verify the proposed methodology. As a result, it was found that the methodology developed showed the F1-Score of the air mode 1.00, rail mode 0.95, bus mode 0.73.

Deep Learning-Based Plant Health State Classification Using Image Data (영상 데이터를 이용한 딥러닝 기반 작물 건강 상태 분류 연구)

  • Ali Asgher Syed;Jaehawn Lee;Alvaro Fuentes;Sook Yoon;Dong Sun Park
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.43-53
    • /
    • 2024
  • Tomatoes are rich in nutrients like lycopene, β-carotene, and vitamin C. However, they often suffer from biological and environmental stressors, resulting in significant yield losses. Traditional manual plant health assessments are error-prone and inefficient for large-scale production. To address this need, we collected a comprehensive dataset covering the entire life span of tomato plants, annotated across 5 health states from 1 to 5. Our study introduces an Attention-Enhanced DS-ResNet architecture with Channel-wise attention and Grouped convolution, refined with new training techniques. Our model achieved an overall accuracy of 80.2% using 5-fold cross-validation, showcasing its robustness in precisely classifying the health states of tomato plants.

Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations (유전자 알고리즘 및 국소 적응 오퍼레이션 기반의 의료 진단 문제 자동화 기법 연구)

  • Lee, Ki-Kwang;Han, Chang-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.193-206
    • /
    • 2008
  • Medical diagnosis can be considered a classification task which classifies disease types from patient's condition data represented by a set of pre-defined attributes. This study proposes a hybrid genetic algorithm based classification method to develop classifiers for multidimensional pattern classification problems related with medical decision making. The classification problem can be solved by identifying separation boundaries which distinguish the various classes in the data pattern. The proposed method fits a finite number of regional agents to the data pattern by combining genetic algorithms and local adaptive operations. The local adaptive operations of an agent include expansion, avoidance and relocation, one of which is performed according to the agent's fitness value. The classifier system has been tested with well-known medical data sets from the UCI machine learning database, showing superior performance to other methods such as the nearest neighbor, decision tree, and neural networks.

  • PDF

A Two-Dimensional Binary Prefix Tree for Packet Classification (패킷 분류를 위한 이차원 이진 프리픽스 트리)

  • Jung, Yeo-Jin;Kim, Hye-Ran;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.4
    • /
    • pp.543-550
    • /
    • 2005
  • Demand for better services in the Internet has been increasing due to the rapid growth of the Internet, and hence next generation routers are required to perform intelligent packet classification. For a given classifier defining packet attributes or contents, packet classification is the process of identifying the highest priority rule to which a packet conforms. A notable characteristic of real classifiers is that a packet matches only a small number of distinct source-destination prefix pairs. Therefore, a lot of schemes have been proposed to filter rules based on source and destination prefix pairs. However, most of the schemes are based on sequential one-dimensional searches using trio which requires huge memory. In this paper, we proposea memory-efficient two-dimensional search scheme using source and destination prefix pairs. By constructing binary prefix tree, source prefix search and destination prefix search are simultaneously performed in a binary tree. Moreover, the proposed two-dimensional binary prefix tree does not include any empty internal nodes, and hence memory waste of previous trio-based structures is completely eliminated.

Aggregating Prediction Outputs of Multiple Classification Techniques Using Mixed Integer Programming (다수의 분류 기법의 예측 결과를 결합하기 위한 혼합 정수 계획법의 사용)

  • Jo, Hongkyu;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.71-89
    • /
    • 2003
  • Although many studies demonstrate that one technique outperforms the others for a given data set, there is often no way to tell a priori which of these techniques will be most effective in the classification problems. Alternatively, it has been suggested that a better approach to classification problem might be to integrate several different forecasting techniques. This study proposes the linearly combining methodology of different classification techniques. The methodology is developed to find the optimal combining weight and compute the weighted-average of different techniques' outputs. The proposed methodology is represented as the form of mixed integer programming. The objective function of proposed combining methodology is to minimize total misclassification cost which is the weighted-sum of two types of misclassification. To simplify the problem solving process, cutoff value is fixed and threshold function is removed. The form of mixed integer programming is solved with the branch and bound methods. The result showed that proposed methodology classified more accurately than any of techniques individually did. It is confirmed that Proposed methodology Predicts significantly better than individual techniques and the other combining methods.

  • PDF