• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.032 seconds

A study on the realization of color printed material check using Error Back-Propagation rule (오류 역전파법으로구현한 컬러 인쇄물 검사에 관한 연구)

  • 한희석;이규영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.560-567
    • /
    • 1998
  • This paper concerned about a imputed color printed material image in camera to decrease noise and distortion by processing median filtering with input image to identical condition. Also this paper proposed the way of compares a normal printed material with an abnormal printed material color tone with trained a learning of the error back-propagation to block classification by extracting five place from identical block(3${\times}$3) of color printed material R, G, B value. As a representative algorithm of multi-layer perceptron the error Back-propagation technique used to solve complex problems. However, the Error Back-propagation is algorithm which basically used a gradient descent method which can be converged to local minimum and the Back Propagation train include problems, and that may converge in a local minimum rather than get a global minimum. The network structure appropriate for a given problem. In this paper, a good result is obtained by improve initial condition and adjust th number of hidden layer to solve the problem of real time process, learning and train.

  • PDF

Motion Planning of an Autonomous Mobile Robot in Flexible Manufacturing Systems

  • Kim, Yoo-Seok-;Lee, Jang-Gyu-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1254-1257
    • /
    • 1993
  • Presented in this paper is a newly developed motion planning method of an autonomous mobile robot(MAR) which can be applied to flexible manufacturing systems(FMS). The mobile robot is designed for transporting tools and workpieces between a set-up station and machines according to production schedules of the whole FMS. The proposed method is implemented based on an earlier developed real-time obstacle avoidance method which employs Kohonen network for pattern classification of sonar readings and fuzzy logic for local path planning. Particulary, a novel obstacle avoidance method for moving objects using a collision index, collision possibility measure, is described. Our method has been tested on the SNU mobile robot. The experimental results show that the robot successfully navigates to its target while avoiding moving objects.

  • PDF

On-line Korean Sing Language(KSL) Recognition using Fuzzy Min-Max Neural Network and feature Analysis

  • zeungnam Bien;Kim, Jong-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.85-91
    • /
    • 1995
  • This paper presents a system which recognizes the Korean Sign Language(KSL) and translates into normal Korean speech. A sign language is a method of communication for the deaf-mute who uses gestures, especially both hands and fingers. Since the human hands and fingers are not the same in physical dimension, the same form of a gesture produced by two signers with their hands may not produce the same numerical values when obtained through electronic sensors. In this paper, we propose a dynamic gesture recognition method based on feature analysis for efficient classification of hand motions, and on a fuzzy min-max neural network for on-line pattern recognition.

  • PDF

Multi-pattern Classification Using Kernel Bagging-based Import Vector Machine (커널 Bagging기반의 Import Vector Machine을 이용한 다중 패턴 분류)

  • 최준혁;김대수;임기욱
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.275-278
    • /
    • 2002
  • Vapnik이 제안한 Support Vector Machine은 두 개의 부류를 갖는 데이터에 대한 분류에는 매우 좋은 성능을 보인다는 점은 이미 잘 알려져 있다. 하지만 부류의 개수가 3개 이상인 다중 패턴을 갖는 데이터에 대한 분류에는 SVM을 적용하기가 쉽지 않다. Support Vector Machine의 이러한 문제점을 해결하기 위하여 Zhu는 3개 이상의 부류를 갖는 데이터의 패턴 분류를 위하여 Import Vector Machine을 제안하였다. 이 모형은 Support Vector Machine을 이용하여 해결하기 어려운 다중 패턴 분류를 가능케 한다. Import Vector Machine은 커널 로지스틱 기반의 함수만을 사용하지만 본 논문에서는 다수의 커널 함수를 적용하여 가장 성능이 우수한 커널 함수를 찾아내어 최종 분류를 수행하게되는 bagging 기법을 적용하였다 제안하는 방법이 기존의 방법에 비해, 더욱 정확한 분류를 수행함을 실험 결과를 통해 확인한다.

A Fuzzy Image Contrast Enhancement Technique using the K-means Algorithm (K-means 알고리듬을 이용한 퍼지 영상 대비 강화 기법)

  • 정준희;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.295-299
    • /
    • 2002
  • This paper presents an image contrast enhancement technique for improving low contrast images. We applied fuzzy logic to develop an image contrast enhancement technique in the viewpoint of considering that the low pictorial information of a low contrast image is due to the vaguness or fuzziness of the multivalued levels of brightness rather than randomness. The fuzzy image contrast enhancement technique consists of three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. In the stage of image fuzzification, we need to select a crossover point. To select the crossover point automatically the K-means algorithm is used. The problem of crossover point selection can be considered as the two-category, object and background, classification problem. The proposed method is applied to an experimental image with 256 gray levels and the result of the proposed method is compared with that of the histogram equalization technique. We used the index of fuzziness as a measure of image quality. The result shows that the proposed method is better than the histogram equalization technique.

Pattern Classification for Biomedical Signal using BP Algorithm and SVM (BP알고리즘과 SVM을 이용한 심전도 신호의 패턴 분류)

  • Kim, Man-Sun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.82-87
    • /
    • 2004
  • ECG consists of various waveforms of electric signals of heat. Datamining can be used for analyzing and classifying the waveforms. Conventional studies classifying electrocardiogram have problems like extraction of distorted characteristics, overfitting, etc. This study classifies electrocardiograms by using BP algorithm and SVM to solve the problems. As results, this study finds that SVM provides an effective prohibition of overfitting in neural networks and guarantees a sole global solution, showing excellence in generalization performance.

Fault Detection Relaying for Transmission line Protection using ANFIS (적응형 퍼지 시스템에 의한 송전선로보호의 고장검출 계전기법)

  • 전병준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.538-544
    • /
    • 1999
  • In this paper, we propose a new fault detection algorithm for transmission line protection using ANFIS(Adaptive Network Fuzzy Inference System). The developed system consists of two subsystems: fault type classification, and fault location estimation. We use rms value, zero sequence component and positive sequence of current, and then using learning method of neural network, premise and consequent parameters are tuned properly. To prove the performance of the proposcd system, generated data by EMTP(Electr0- Magnetic Transient Program) sin~ulationi s used. It is shown that the proposed relaying classifies fault types accurately and advances fault location estimation.

  • PDF

Evolutionary Design for Multi-domain Engineering System - Air Pump Redesign

  • Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.228-233
    • /
    • 2006
  • This paper introduces design method for air pump system using bond graph and genetic programming to maximize outflow subject to a constraint specifying maximum power consumption. The air pump system is a mixed domain system which includes electromagnetic, mechanical and pneumatic elements. Therefore an appropriate approach for a better system for synthesis is required. Bond graphs are domain independent, allow free composition, and are efficient for classification and analysis of models. Genetic programming is well recognized as a powerful tool for open-ended search. The combination of these two powerful methods, BG/GP, was tested for redesign of air pump system.

APPLICATIONS OF NEURO-FUZZY TECHNIQUES TO COLOR IMAGE PROCESSINGS

  • Kurosawa, Masa-Akl;Gotoh, Kel-Lchl;Takagi, Tshiyukl;Nakanishi, Shohachiro
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.960-963
    • /
    • 1993
  • We focus our attention on grading of table meat in accordance with the standard of Japan Meat Grading Association, and construct a beef grading system by image processing. For image processing of beef grading, it needs some techniques such as a shading correction, separation of color image data, and classification of color image data into some grades, for the system construction. However, there are various kinds of weak points in usually used methods for these techniques. Then the authors propose and introduce new approaches using Neural networks and fuzzy inference for the techniques above mentioned, which is very convenient and ensure the high precision.

  • PDF

Distance Sensitive AdaBoost using Distance Weight Function

  • Lee, Won-Ju;Cheon, Min-Kyu;Hyun, Chang-Ho;Park, Mi-Gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.143-148
    • /
    • 2012
  • This paper proposes a new method to improve performance of AdaBoost by using a distance weight function to increase the accuracy of its machine learning processes. The proposed distance weight algorithm improves classification in areas where the original binary classifier is weak. This paper derives the new algorithm's optimal solution, and it demonstrates how classifier accuracy can be improved using the proposed Distance Sensitive AdaBoost in a simulation experiment of pedestrian detection.