• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.025 seconds

An Implementation of Neuro-Fuzzy Based Land Convert Pattern Classification System for Remote Sensing Image (뉴로-퍼지 알고리즘을 이용한 원격탐사 화상의 지표면 패턴 분류시스템 구현)

  • 이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.472-479
    • /
    • 1999
  • In this paper, we propose a land cover pattern classifier for remote sensing image by using neuro-fuzzy algorithm. The proposed pattem classifier has a 3-layer feed-forward architecture that is derived from generic fuzzy perceptrons, and the weights are con~posed of h u y sets. We also implement a neuro-fuzzy pattern classification system in the Visual C++ environment. To measure the performance of this, we compare it with the conventional neural networks with back-propagation learning and the Maximum-likelihood algorithms. We classified the remote sensing image into the eight classes covered the majority of land cover feature, selected the same training sites. Experimental results show that the proposed classifier performs well especially in the mixed composition area having many classes rather than the conventional systems.

  • PDF

Optimal EEG Feature Extraction using DWT for Classification of Imagination of Hands Movement

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.786-791
    • /
    • 2011
  • An optimal feature selection and extraction procedure is an important task that significantly affects the success of brain activity analysis in brain-computer interface (BCI) research area. In this paper, a novel method for extracting the optimal feature from electroencephalogram (EEG) signal is proposed. At first, a student's-t-statistic method is used to normalize and to minimize statistical error between EEG measurements. And, 2D time-frequency data set from the raw EEG signal was extracted using discrete wavelet transform (DWT) as a raw feature, standard deviations and mean of 2D time-frequency matrix were extracted as a optimal EEG feature vector along with other basis feature of sub-band signals. In the experiment, data set 1 of BCI competition IV are used and classification using SVM to prove strength of our new method.

Cloud Attack Detection with Intelligent Rules

  • Pradeepthi, K.V;Kannan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4204-4222
    • /
    • 2015
  • Cloud is the latest buzz word in the internet community among developers, consumers and security researchers. There have been many attacks on the cloud in the recent past where the services got interrupted and consumer privacy has been compromised. Denial of Service (DoS) attacks effect the service availability to the genuine user. Customers are paying to use the cloud, so enhancing the availability of services is a paramount task for the service provider. In the presence of DoS attacks, the availability is reduced drastically. Such attacks must be detected and prevented as early as possible and the power of computational approaches can be used to do so. In the literature, machine learning techniques have been used to detect the presence of attacks. In this paper, a novel approach is proposed, where intelligent rule based feature selection and classification are performed for DoS attack detection in the cloud. The performance of the proposed system has been evaluated on an experimental cloud set up with real time DoS tools. It was observed that the proposed system achieved an accuracy of 98.46% on the experimental data for 10,000 instances with 10 fold cross-validation. By using this methodology, the service providers will be able to provide a more secure cloud environment to the customers.

Photon-counting linear discriminant analysis for face recognition at a distance

  • Yeom, Seok-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • Face recognition has wide applications in security and surveillance systems as well as in robot vision and machine interfaces. Conventional challenges in face recognition include pose, illumination, and expression, and face recognition at a distance involves additional challenges because long-distance images are often degraded due to poor focusing and motion blurring. This study investigates the effectiveness of applying photon-counting linear discriminant analysis (Pc-LDA) to face recognition in harsh environments. A related technique, Fisher linear discriminant analysis, has been found to be optimal, but it often suffers from the singularity problem because the number of available training images is generally much smaller than the number of pixels. Pc-LDA, on the other hand, realizes the Fisher criterion in high-dimensional space without any dimensionality reduction. Therefore, it provides more invariant solutions to image recognition under distortion and degradation. Two decision rules are employed: one is based on Euclidean distance; the other, on normalized correlation. In the experiments, the asymptotic equivalence of the photon-counting method to the Fisher method is verified with simulated data. Degraded facial images are employed to demonstrate the robustness of the photon-counting classifier in harsh environments. Four types of blurring point spread functions are applied to the test images in order to simulate long-distance acquisition. The results are compared with those of conventional Eigen face and Fisher face methods. The results indicate that Pc-LDA is better than conventional facial recognition techniques.

An Experimental Study on Smoothness Regularized LDA in Hyperspectral Data Classification (하이퍼스펙트럴 데이터 분류에서의 평탄도 LDA 규칙화 기법의 실험적 분석)

  • Park, Lae-Jeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.534-540
    • /
    • 2010
  • High dimensionality and highly correlated features are the major characteristics of hyperspectral data. Linear projections such as LDA and its variants have been used in extracting low-dimensional features from high-dimensional spectral data. Regularization of LDA has been introduced to alleviate the overfitting that often occurs in a small-sized training data set and leads to poor generalization performance. Among them, a smoothness regularized LDA seems to be effective in the feature extraction for hyperspectral data due to its capability of utilizing the high correlatedness. This paper studies the performance of the regularized LDA in hyperspectral data classification experimentally with varying conditions of the training data. In addition, a new dual smoothness regularized LDA is proposed and evaluated that makes use of both the spectral-domain and spatial-domain correlations between neighboring pixels.

Odor Source Tracking of Mobile Robot with Vision and Odor Sensors (비전과 후각 센서를 이용한 이동로봇의 냄새 발생지 추적)

  • Ji, Dong-Min;Lee, Jeong-Jun;Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.698-703
    • /
    • 2006
  • This paper proposes an approach to search for the odor source using an autonomous mobile robot equipped with vision and odor sensors. The robot is initially navigating around the specific area with vision system until it looks for an object in the camera image. The robot approaches the object found in the field of view and checks it with the odor sensors if it is releasing odor. If so, the odor is classified and localized with the classification algorithm based on neural network The AMOR(Autonomous Mobile Olfactory Robot) was built up and used for the experiments. Experimental results on the classification and localization of odor sources show the validity of the proposed algorithm.

Design and Implementation of Intelligent Medical Service System Based on Classification Algorithm

  • Yu, Linjun;Kang, Yun-Jeong;Choi, Dong-Oun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.92-103
    • /
    • 2021
  • With the continuous acceleration of economic and social development, people gradually pay attention to their health, improve their living environment, diet, strengthen exercise, and even conduct regular health examination, to ensure that they always understand the health status. Even so, people still face many health problems, and the number of chronic diseases is increasing. Recently, COVID-19 has also reminded people that public health problems are also facing severe challenges. With the development of artificial intelligence equipment and technology, medical diagnosis expert systems based on big data have become a topic of concern to many researchers. At present, there are many algorithms that can help computers initially diagnose diseases for patients, but they want to improve the accuracy of diagnosis. And taking into account the pathology that varies from person to person, the health diagnosis expert system urgently needs a new algorithm to improve accuracy. Through the understanding of classic algorithms, this paper has optimized it, and finally proved through experiments that the combined classification algorithm improved by latent factors can meet the needs of medical intelligent diagnosis.

A Topographical Classifier Development Support System Cooperating with Data Mining Tool WEKA from Airborne LiDAR Data (항공 라이다 데이터로부터 데이터마이닝 도구 WEKA를 이용한 지형 분류기 제작 지원 시스템)

  • Lee, Sung-Gyu;Lee, Ho-Jun;Sung, Chul-Woong;Park, Chang-Hoo;Cho, Woo-Sug;Kim, Yoo-Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.133-142
    • /
    • 2010
  • To monitor composition and change of the national land, intelligent topographical classifier which enables accurate classification of land-cover types from airborne LiDAR data is highly required. We developed a topographical classifier development support system cooperating with da1a mining tool WEKA to help users to construct accurate topographical classification systems. The topographical classifier development support system has the following functions; superposing LiDAR data upon corresponding aerial images, dividing LiDAR data into tiles for efficient processing, 3D visualization of partial LiDAR data, feature from tiles, automatic WEKA input generation, and automatic C++ program generation from the classification rule set. In addition, with dam mining tool WEKA, we can choose highly distinguishable features by attribute selection function and choose the best classification model as the result topographical classifier. Therefore, users can easily develop intelligent topographical classifier which is well fitted to the developing objectives by using the topographical classifier development support system.

Evolving Cellular Automata Neural Systems(ECANS 1)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.158-163
    • /
    • 1998
  • This paper is our first attempt to construct a information processing system such as the living creatures' brain based on artificial life technique. In this paper, we propose a method of constructing neural networks using bio-inspired emergent and evolutionary concept, Ontogeny of living things is realized by cellular automata model and Phylogeny that is living things adaptation ability themselves to given environment, are realized by evolutionary algorithms. Proposing evolving cellular automata neural systems are calledin a word ECANS. A basic component of ECANS is 'cell' which is modeled on chaotic neuron with complex characteristics, In our system, the states of cell are classified into eight by method of connection neighborhood cells. When a problem is given, ECANS adapt itself to the problem by evolutionary method. For fixed cells transition rule, the structure of neural network is adapted by change of initial cell' arrangement. This initial cell is to become a network b developmental process. The effectiveness and the capability of proposed scheme are verified by applying it to pattern classification and robot control problem.

  • PDF

An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance (지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거)

  • Nguyen, Thanh Binh;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.