• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.025 seconds

Design of A Personalized Classifier using Soft Computing Techniques and Its Application to Facial Expression Recognition

  • Kim, Dae-Jin;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.521-524
    • /
    • 2003
  • In this paper, we propose a design process of 'personalized' classification with soft computing techniques. Based on human's thinking way, a construction methodology for personalized classifier is mentioned. Here, two fuzzy similarity measures and ensemble of classifiers are effectively used. As one of the possible applications, facial expression recognition problem is discussed. The numerical result shows that the proposed method is very useful for on-line learning, reusability of previous knowledge and so on.

  • PDF

FMMN-based Neuro-Fuzzy Classifier and Its Application (FMMN 기반 뉴로-퍼지 분류기와 응용)

  • 곽근창;전명근;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.259-262
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian menbership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

Chemical sensors technology (화학 센서 기술)

  • Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2009
  • There have been continued effects to develop various types of chemical sensors according to the demands in many application fields such as safety, pollution, environment, medical engineering and food industries etc. In this review, the author intended to cover the general aspects of chemical sensors, including the history of the development, the classification, the sensing properties, and the types and application examples. And the future outlook of the chemical sensor technology, focusing on the advanced materials, high technology fusion, miniaturized intelligent system and ubiquitous sensor networks etc., has been described.

A Framework for Intelligent Data Interpretation System in Organizational Computing

  • Jung, Chul-Yong
    • Korean Management Science Review
    • /
    • v.15 no.2
    • /
    • pp.177-200
    • /
    • 1998
  • One of organization's generic functions is the interpretation of events to carry out decision-making activities. In intelligent Data Interpretation System(IDIS), Interpreting is computationally modeled as classification of new data into categories having similar features. We define the Extensional Object Model(ExOM) as a formalism for IDIS. In ExOM, objects and categories are loosely coupled to provide flexibility for both object description and category definition in data gathering and interpretation process. Objects are classified inductively based on exemplars of categories as well as deductively based on category structures.

  • PDF

Pattern Classification by Using Bayesian GTM (베이지안 GTM을 이용한 패턴 분류)

  • 최준혁;김중배;김대수;임기욱
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.287-290
    • /
    • 2001
  • Bishop이 제안한 generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률적 버전이다. 본 논문에서는 이러한 GTM 모형에 베이지안 추론을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 방법은 기존의 GTM의 빠른 계산 처리 능력과 베이지안 추론을 이용하여 기존의 분류 알고리즘보다 우수한 결과가 나타남을 실험을 통하여 확인하였다.

  • PDF

A Study on Customer Optimized Classification System in eCRM (eCRM에서 고객 최적 분류 시스템에 관한 연구)

  • 이재훈;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.58-61
    • /
    • 2004
  • 최근 기업들의 고객중심 마케팅 기법중 하나인 고객관계관리(CRM:Customer Relationship Management)가 인터넷의 발전으로 온라인화 되고 있으며 다양하게 발전되어 왔다. 가장 대두되고 있는 문제는 고객 분류를 객관적인 방법으로 어떻게 자동화할 수 있는가 이다. 본 논문은 고객 성향 분석과 개인화에서 얻어진 일련의 정보를 다시 한번 더 가공함으로써 고객 집단 편성을 최적화하고 이를 이용하여 고객을 최적으로 분류할 수 있는 시스템을 설계 및 구축하였다.

  • PDF

The selection of Best suited Automatic Web Document Classification Based on Intranet (인트라넷 기반의 최적의 웹문서 자동 분류기법 선정)

  • 김국희;윤희병
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.423-426
    • /
    • 2004
  • 인트라넷에서는 증가하는 웹문서의 검색을 목적으로 웹 검색엔진의 도입이 활발히 진행 중이며 대부분 찾아야할 키워드를 알고 접근하는 검색엔진 형태이다. 그러나 사용자가 무엇을 찾아야 하는지 모르는 경우 웹문서 분류체계는 효율적인 방법을 제시할 수 있다. 일부 구축되어 있는 분류체계는 수작업에 의한 분류로 인해 증가하는 웹문서의 양에 효율적으로 대처하기 곤란하므로 자동분류기법을 활용한 분류가 더 효율적일 것이다. 본 논문에서는 국방인트라넷의 수작업으로 구축된 분류체계를 대상으로 용어 가중치를 계산하는 방법을 달리하여 다양한 분류기법을 적용하여 성능을 비교평가하고 웹문서 자동분류시스템에 적용하여 분류성능의 향상을 도모하고자 한다.

  • PDF

Classification of emotion data using rough set on fuzzy inference (퍼지추론에서 러프집합을 이용한 감성 데이터의 분류)

  • 손창식;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.145-148
    • /
    • 2004
  • 규칙 기반 추론 시스템에서 규칙의 속성 감축은 다양한 방법으로 제안되어 왔다. 규칙의 속성 감축은 퍼지 추론 시스템을 구현하는데 있어서 처리 시간을 단축시킬 수 있으나 규칙의 종속성 및 상관성을 고려하지 않을 경우 예상하지 못한 추론 결과를 얻을 수 있다. 따라서, 본 논문에서는 복합속성을 가진 규칙의 속성 감축과 상관성을 고려하기 위하여 러프집합의 특성 중 식별가능 행렬과 식별가능 함수를 이용하였다. 그리고 속성 감축에 사용된 규칙은 복합속성(composite attribute)을 가지는 감성 데이터를 이용하였다.

  • PDF

Customer Classification System using Optimized Form in eCRM (eCRM에서 최적화 모형을 이용한 고객 분류 시스템)

  • 이재훈;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.149-152
    • /
    • 2004
  • 기업들의 고객중심 마케팅 기법중 하나인 고객관계관리(CRM : Customer Relationship Management)가 인터넷의 발전으로 온라인화 되고 있으며 다양하게 발전되어 왔다. 가장 대두되고 있는 문제는 고객 분류를 객관적인 방법으로 어떻게 자동화할 수 있는가 이다. 본 논문은 최적화 모형을 이용하여 고객 분류를 더욱 세밀하게 할 수 있음을 제안하였고 고객 집단 편성 최적화를 반영함으로써 고객을 최적으로 분류할 수 있는 시스템을 설계 및 구축하였다.

  • PDF

A Comparison of the Performance of Classification for Biomedical Signal using Neural Networks

  • Kim Man-Sun;Lee Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.179-183
    • /
    • 2006
  • ECG consists of various waveforms of electric signals of heat. Datamining can be used for analyzing and classifying the waveforms. Conventional studies classifying electrocardiogram have problems like extraction of distorted characteristics, overfitting, etc. This study classifies electrocardiograms by using BP algorithm and SVM to solve the problems. As results, this study finds that SVM provides an effective prohibition of overfitting in neural networks and guarantees a sole global solution, showing excellence in generalization performance.