• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.026 seconds

Robot Control based on Steady-State Visual Evoked Potential using Arduino and Emotiv Epoc (아두이노와 Emotiv Epoc을 이용한 정상상태시각유발전위 (SSVEP) 기반의 로봇 제어)

  • Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.254-259
    • /
    • 2015
  • In this paper, The wireless robot control system was proposed using Brain-computer interface(BCI) systems based on the steady-state visual evoked potential(SSVEP). Cross Power Spectral Density(CPSD) was used for analysis of electroencephalogram(EEG) and extraction of feature data. And Linear Discriminant Analysis(LDA) and Support Vector Machine(SVM) was used for patterns classification. We obtained the average classification rates of about 70% of each subject. Robot control was implemented using the results of classification of EEG and commanded using bluetooth communication for robot moving.

Multi-Radial Basis Function SVM Classifier: Design and Analysis

  • Wang, Zheng;Yang, Cheng;Oh, Sung-Kwun;Fu, Zunwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2511-2520
    • /
    • 2018
  • In this study, Multi-Radial Basis Function Support Vector Machine (Multi-RBF SVM) classifier is introduced based on a composite kernel function. In the proposed multi-RBF support vector machine classifier, the input space is divided into several local subsets considered for extremely nonlinear classification tasks. Each local subset is expressed as nonlinear classification subspace and mapped into feature space by using kernel function. The composite kernel function employs the dual RBF structure. By capturing the nonlinear distribution knowledge of local subsets, the training data is mapped into higher feature space, then Multi-SVM classifier is realized by using the composite kernel function through optimization procedure similar to conventional SVM classifier. The original training data set is partitioned by using some unsupervised learning methods such as clustering methods. In this study, three types of clustering method are considered such as Affinity propagation (AP), Hard C-Mean (HCM) and Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA). Experimental results on benchmark machine learning datasets show that the proposed method improves the classification performance efficiently.

Classification of DNA Pattern Using Negative Selection (부정 선택을 이용한 DNA의 패턴 분류)

  • Sim, Kwee-Bo;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.551-556
    • /
    • 2004
  • According to revealing the DNA sequence of human and living things, it increases that a demand on a new computational processing method which utilizes DNA sequence information. In this paper we propose a classification algorithm based on negative selection of the immune system to classify DNA patterns. Negative selection is the process to determine an antigenic receptor that recognize antigens, nonself cells. The immune cells use this antigen receptor to judge whether a self or not. If one composes n group of antigenic receptor for n different patterns, they can classify into n patterns. In this paper we propose a pattern classification algorithm based on negative selection in nucleotide base level and amino acid level.

Design of Pattern Classification Rule based on Local Linear Discriminant Analysis Classifier by using Differential Evolutionary Algorithm (차분진화 알고리즘을 이용한 지역 Linear Discriminant Analysis Classifier 기반 패턴 분류 규칙 설계)

  • Roh, Seok-Beom;Hwang, Eun-Jin;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • In this paper, we proposed a new design methodology of a pattern classification rule based on the local linear discriminant analysis expanded from the generic linear discriminant analysis which is used in the local area divided from the whole input space. There are two ways such as k-Means clustering method and the differential evolutionary algorithm to partition the whole input space into the several local areas. K-Means clustering method is the one of the unsupervised clustering methods and the differential evolutionary algorithm is the one of the optimization algorithms. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods.

A Study on the Signal Processing Techiques for Pattern Classification of Electrical Loads (전기부하 패턴분류를 위한 신호처리 기법에 관한 연구)

  • Lim, Young Bae;Kim, Dong Woo;Jin, Sangmin;Cho, Seongwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.409-415
    • /
    • 2016
  • Recently several techniques for disaster prevention based on IoT(Internet of Things) are being developed. In this paper, a new smart pattern classification method for electric loads is proposed. CT(Current Transformer) data are extracted from electric loads, and then the sampled CT data are converted using FFT and MFCC. FFT and FMCC data are used for the input data of neural networks. Experiments were conducted using FFT and MFCC data for 7 kinds of electric loads. Experiments results indicate the superiority of MFCC in comparison to FFT.

A New Unsupervised Learning Network and Competitive Learning Algorithm Using Relative Similarity (상대유사도를 이용한 새로운 무감독학습 신경망 및 경쟁학습 알고리즘)

  • 류영재;임영철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2000
  • In this paper, we propose a new unsupervised learning network and competitive learning algorithm for pattern classification. The proposed network is based on relative similarity, which is similarity measure between input data and cluster group. So, the proposed network and algorithm is called relative similarity network(RSN) and learning algorithm. According to definition of similarity and learning rule, structure of RSN is designed and pseudo code of the algorithm is described. In general pattern classification, RSN, in spite of deletion of learning rate, resulted in the identical performance with those of WTA, and SOM. While, in the patterns with cluster groups of unclear boundary, or patterns with different density and various size of cluster groups, RSN produced more effective classification than those of other networks.

  • PDF

Empirical Sentiment Classification Using Psychological Emotions and Social Web Data (심리학적 감정과 소셜 웹 자료를 이용한 감성의 실증적 분류)

  • Chang, Moon-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.563-569
    • /
    • 2012
  • The studies of opinion mining or sentiment analysis have been the focus with social web proliferation. Sentiment analysis requires sentiment resources to decide its polarity. In the existing sentiment analysis, they have been built resources designed with intensity of sentiment polarity and decided polarity of opinion using the ones. In this paper, I will present sentiment categories for not only polarity of opinion but also the basis of positive/negative opinion. I will define psychological emotions to primary sentiments for the reasonable classification. And I will extract the informations of sentiment from social web texts for the actual distribution of sentiments in social web. Re-classifying primary sentiments based on extracted sentiment information, I will organize sentiment categories for the social web. In this paper, I will present 23 categories of sentiment by using proposed method.

Implementation of Purchasing Pattern Classification System Using Neural Network and Association Rules (신경망과 연관규칙을 이용한 구매패턴 분류시스템의 구현)

  • Lee, Jong-Min;Chung, Hong;Kim, Jin-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.530-538
    • /
    • 2003
  • Recently the needs for keeping existing customers is increasing in the field of marketing. So, the customers needs to be classified by groups and the differentiated responses to the specified customer groups are demanded. In this paper, we implemented a system that classifies the customer groups using the neural network, and classified the purchasing patterns among customer groups. Empirically examining the association rules between two groups, we could find out that similar rules exist between them. So, it is important that customers should be classified into the excellent customer group and the general group for the decision making of marketing. This paper shows that the efficiency of the differentiated marketing can be maximized by raising the correctness of the expectation in the classification of customer groups.

Knowledge Classification and Demand Articulation & Integration Methods for Intelligent Recommendation System (지능형 추천시스템 개발을 위한 지식분류, 연결 및 통합 방법에 관한 연구)

  • Ha Sung-Do;Hwang I.S.;Kwon M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.440-443
    • /
    • 2005
  • The wide spread of internet business recently necessitates recommendation systems which can recommend the most suitable product fur customer demands. Currently the recommendation systems use content-based filtering and/or collaborative filtering methods, which are unable both to explain the reason for the recommendation and to reflect constantly changing requirements of the users. These methods guarantee good efficiency only if there is a lot of information about users. This paper proposes an algorithm called 'demand articulate & integration' which can perceive user's continuously varying intents and recommend proper contents. A method of knowledge classification which can be applicable to this algorithm is also developed in order to disassemble knowledge into basic units and articulate indices. The algorithm provides recommendation outputs that are close to expert's opinion through the tracing of articulate index. As a case study, a knowledge base for heritage information is constructed with the expert guide's knowledge. An intelligent recommendation system that can guide heritage tour as good as the expert guider is developed.

  • PDF

Pattern Classification Algorithm of DNA Chip Image using ANN (신경망을 이용한 DNA칩 영상 패턴 분류 알고리즘)

  • Joo, Jong-Tae;Kim, Dae-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.556-561
    • /
    • 2006
  • It is very important to classify the DNA Chip image pattern in order to acquire useful information about genetic disease of people. In this paper, we developed the novel pattern classification method of DNA Chip image using MLP based back-propagation and Self organizing Map learning algorithm. And then we compared and analyzed these classified pattern results. Also we carried out experiment in the MV2440 board using CPU Cote for S3C2440(ARM 920T) and PC environment, and displayed its results in order to give the genetic information to user mote easily in various environment.